Department of Biological Sciences, University of Alberta, , Edmonton, Alberta, Canada.
Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2279-88. doi: 10.1098/rstb.2010.0077.
Quantifying kill rates and sources of variation in kill rates remains an important challenge in linking predators to their prey. We address current approaches to using global positioning system (GPS)-based movement data for quantifying key predation components of large carnivores. We review approaches to identify kill sites from GPS movement data as a means to estimate kill rates and address advantages of using GPS-based data over past approaches. Despite considerable progress, modelling the probability that a cluster of GPS points is a kill site is no substitute for field visits, but can guide our field efforts. Once kill sites are identified, time spent at a kill site (handling time) and time between kills (killing time) can be determined. We show how statistical models can be used to investigate the influence of factors such as animal characteristics (e.g. age, sex, group size) and landscape features on either handling time or killing efficiency. If we know the prey densities along paths to a kill, we can quantify the 'attack success' parameter in functional response models directly. Problems remain in incorporating the behavioural complexity derived from GPS movement paths into functional response models, particularly in multi-prey systems, but we believe that exploring the details of GPS movement data has put us on the right path.
量化捕杀率和捕杀率的变化来源仍然是将捕食者与其猎物联系起来的一个重要挑战。我们探讨了目前利用基于全球定位系统(GPS)的运动数据来量化大型食肉动物的关键捕食成分的方法。我们回顾了从 GPS 运动数据中识别捕杀地点的方法,作为估计捕杀率的一种手段,并讨论了使用基于 GPS 的数据相对于过去方法的优势。尽管取得了相当大的进展,但模拟 GPS 点簇是捕杀地点的概率并不能替代实地考察,而只能指导我们的实地工作。一旦确定了捕杀地点,就可以确定在捕杀地点花费的时间(处理时间)和两次捕杀之间的时间(捕杀时间)。我们展示了如何使用统计模型来研究动物特征(例如年龄、性别、群体大小)和景观特征对处理时间或捕杀效率的影响。如果我们知道沿着捕杀路径的猎物密度,我们就可以直接在功能反应模型中量化“攻击成功率”参数。将源自 GPS 运动轨迹的行为复杂性纳入功能反应模型仍然存在问题,特别是在多猎物系统中,但我们相信,探索 GPS 运动数据的细节使我们走上了正确的道路。