Biometrics Unit, Minnesota Department of Natural Resources, 5463-C W. Broadway, Forest Lake, MN 55434, USA.
Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2233-44. doi: 10.1098/rstb.2010.0079.
With the advent of new technologies, animal locations are being collected at ever finer spatio-temporal scales. We review analytical methods for dealing with correlated data in the context of resource selection, including post hoc variance inflation techniques, 'two-stage' approaches based on models fit to each individual, generalized estimating equations and hierarchical mixed-effects models. These methods are applicable to a wide range of correlated data problems, but can be difficult to apply and remain especially challenging for use-availability sampling designs because the correlation structure for combinations of used and available points are not likely to follow common parametric forms. We also review emerging approaches to studying habitat selection that use fine-scale temporal data to arrive at biologically based definitions of available habitat, while naturally accounting for autocorrelation by modelling animal movement between telemetry locations. Sophisticated analyses that explicitly model correlation rather than consider it a nuisance, like mixed effects and state-space models, offer potentially novel insights into the process of resource selection, but additional work is needed to make them more generally applicable to large datasets based on the use-availability designs. Until then, variance inflation techniques and two-stage approaches should offer pragmatic and flexible approaches to modelling correlated data.
随着新技术的出现,动物的位置正在以越来越精细的时空尺度被收集。我们回顾了在资源选择背景下处理相关数据的分析方法,包括事后方差膨胀技术、基于对每个个体拟合模型的“两阶段”方法、广义估计方程和层次混合效应模型。这些方法适用于广泛的相关数据问题,但对于使用可用性抽样设计来说,它们可能难以应用,尤其是具有挑战性的,因为使用点和可用点的组合的相关结构不太可能遵循常见的参数形式。我们还回顾了新兴的栖息地选择研究方法,这些方法使用精细的时间数据来确定可用栖息地的生物学定义,同时通过在遥测位置之间建模动物运动来自然地考虑自相关。明确建模相关性而不是将其视为干扰的复杂分析,如混合效应和状态空间模型,为资源选择过程提供了潜在的新见解,但需要进一步的工作来使它们更普遍地适用于基于使用可用性设计的大型数据集。在那之前,方差膨胀技术和两阶段方法应该为相关数据的建模提供实用和灵活的方法。