Suppr超能文献

将二氧化碳转化为燃料。

Turning carbon dioxide into fuel.

机构信息

Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, , South Parks Road, Oxford OX1 3QR, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2010 Jul 28;368(1923):3343-64. doi: 10.1098/rsta.2010.0119.

Abstract

Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances in the science and engineering of materials are critical for these new energy technologies, and specific examples are given for all three examples. With sufficient advances, and institutional and political support, such scientific and technological innovations could help to regulate/stabilize the CO2 levels in the atmosphere and thereby extend the use of fossil-fuel-derived feedstocks.

摘要

我们目前对化石燃料的依赖意味着,随着我们对能源的需求不可避免地增加,温室气体的排放,尤其是二氧化碳(CO2)也会增加。为了避免气候变化的明显后果,大气中温室气体的浓度必须稳定下来。但是,随着人口的增长和经济的发展,未来的需求确保了能源将成为本世纪的决定性问题之一。这一系列独特的(耦合的)挑战也意味着,科学和工程有一个独特的机会-并且面临着一个蓬勃发展的挑战-将他们的理解应用于提供可持续的能源解决方案。综合碳捕获和随后的封存通常被认为是在短期到中期内解决温室气体问题最有希望的选择。在这里,我们简要概述了一种替代的中长期选择,即捕获和转化 CO2,以生产可持续的合成碳氢化合物或碳质燃料,尤其是用于运输目的。基本上,这种方法的核心是利用人类活动释放的 CO2 的大规模再利用概念来生产合成燃料,以及这种具有挑战性的方法如何在解决全球 CO2 排放问题方面发挥重要作用。我们强调了三种涉及 CO2 转化的物理化学方法的可能策略:可持续(或可再生)合成甲醇、来自燃煤、燃气或燃油发电站烟道气的合成气生产以及光化学合成燃料。CO2 用于合成商品化学品的用途在其他地方(Arakawa 等人,2001 年,Chem. Rev. 101, 953-996);本综述侧重于将 CO2 转化为燃料的可能性。尽管这三个原型领域在最终应用上有所不同,但基础热力学考虑的中心是 CO2 的转化-因此是其利用。在这里,我们希望说明材料的科学和工程方面的进步对于这些新能源技术至关重要,并给出了所有三个例子的具体例子。随着足够的进步,以及制度和政治支持,这种科学和技术创新可以帮助调节/稳定大气中的 CO2 水平,从而延长使用化石燃料衍生的原料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验