Moreno Daniel, Omosebi Ayokunle, Jeon Byoung Wook, Abad Keemia, Kim Yong Hwan, Thompson Jesse, Liu Kunlei
Missouri State University, Springfield, Missouri 65806, United States.
Institute for Decarbonization and Energy Advancement, University of Kentucky, Lexington, Kentucky 40511, United States.
ACS Omega. 2024 Sep 9;9(38):39353-39364. doi: 10.1021/acsomega.4c02134. eCollection 2024 Sep 24.
With an efficient atom economy, low activation energy, and valuable applications for fuel cells and hydrogen storage, formic acid (FA) is a useful fuel product to convert CO and reduce emissions. Although metal catalysts are typically used for this conversion, unwanted side reactions remain a concern, particularly when products are attempted to be recovered long-term. In this study, an enzymatic catalyst is used to enable the selective conversion of CO to FA, as a formate ion. A dual-cell flow reactor system is used to first reduce a charge mediator electrochemically (reduction cell), which then activates a catalyst to selectively convert CO to formate (production cell). This approach minimizes enzyme degradation by avoiding direct contact with increased voltages and improves the quantity of formate produced. The system produced 25 mM of formate and reached over 50% Coulombic efficiency. The larger volume of this dual-cell system increases the quantity of formate produced beyond that of a batch cell. Additional design configurations are employed, including a pH control pump to maintain catalyst activity and a packed bed reactor to improve contact of the charge carrier with the catalyst. Both configurations retained higher production and efficiency long-term (∼168 h). The results highlight the challenges of developing a system where many parameters play a role in optimizing performance. Nevertheless, the ability of the system to produce formate from CO demonstrates the potential to improve upon this configuration for a variety of electrochemical CO conversion applications.
甲酸(FA)具有高效的原子经济性、低活化能,并且在燃料电池和储氢方面有重要应用,是一种将一氧化碳转化并减少排放的有用燃料产品。尽管通常使用金属催化剂进行这种转化,但不需要的副反应仍然令人担忧,特别是在试图长期回收产物时。在本研究中,使用一种酶催化剂将一氧化碳选择性转化为甲酸根离子形式的甲酸。采用双电池流动反应器系统,首先在还原电池中电化学还原电荷介质,然后在生产电池中激活催化剂将一氧化碳选择性转化为甲酸根。这种方法通过避免与升高的电压直接接触,最大限度地减少了酶的降解,并提高了甲酸根的产量。该系统产生了25 mM的甲酸根,库仑效率超过50%。这种双电池系统更大的体积使得产生的甲酸根量超过了间歇式电池。还采用了其他设计配置,包括用于维持催化剂活性的pH控制泵和用于改善电荷载体与催化剂接触的填充床反应器。两种配置都能长期(约168小时)保持较高的产量和效率。结果突出了开发一个许多参数在优化性能中起作用的系统所面临的挑战。然而,该系统从一氧化碳生产甲酸根的能力证明了改进这种配置以用于各种电化学一氧化碳转化应用的潜力。