Department of Computer Science, University of Verona, Strada le Grazie, 15 37134, Verona, Italy.
Int J Comput Assist Radiol Surg. 2011 Mar;6(2):265-72. doi: 10.1007/s11548-010-0505-9. Epub 2010 Jun 23.
Interactive, physics based, simulations of deformable bodies are a growing research area with possible applications to computer-aided surgery. Their aim is to create virtual environments where surgeons are free to practice. To ensure the needed realism, the simulations must be performed with deformable bodies. The goal of this paper is to describe the approach to the development of a physics-based surgical simulator with haptic feedback.
The main development issue is the representation of the organ behavior at the high rates required by haptic realism. Since even high-end computers have inadequate performance, our approach exploits the parallelism of modern Graphics Processing Units (GPU). Particular attention is paid to the simulation of cuts because of their great importance in the surgical practice and the difficulty in handling topological changes in real time.
To prove the correctness of our approach, we simulated an interactive, physically based, virtual abdomen. The simulation allows the user to interact with deformable models. Deformable models are updated in real time, thus allowing the rendering of force feedback to the user. The method is optimized to handle high quality scenes: we report results of interactive simulation of two virtual tools interacting with a complex model.
The integration of physics-based deformable models in simulations greatly increases the realism of the virtual environment, taking into account real tissue properties and allowing the user to feel the actual forces exerted by organs on virtual tools. Our method proves the feasibility of exploiting GPU to simulate deformable models in interactive virtual environments.
基于物理的交互式可变形体模拟是一个不断发展的研究领域,可能应用于计算机辅助手术。其目的是创建一个虚拟环境,让外科医生可以自由练习。为了确保所需的真实性,模拟必须使用可变形体进行。本文的目的是描述一种具有触觉反馈的基于物理的手术模拟器的开发方法。
主要的开发问题是在触觉逼真所需的高速度下表示器官行为。由于即使是高端计算机的性能也不足,我们的方法利用了现代图形处理单元(GPU)的并行性。特别注意模拟切割,因为它们在手术实践中非常重要,并且实时处理拓扑变化具有难度。
为了证明我们方法的正确性,我们模拟了一个交互式、基于物理的虚拟腹部。该模拟允许用户与可变形模型进行交互。可变形模型实时更新,从而允许向用户呈现力反馈。该方法经过优化,可处理高质量的场景:我们报告了与复杂模型交互的两个虚拟工具的交互式模拟的结果。
将基于物理的可变形模型集成到模拟中可以极大地提高虚拟环境的真实性,考虑到实际组织特性,并允许用户感受到器官对虚拟工具施加的实际力。我们的方法证明了利用 GPU 在交互式虚拟环境中模拟可变形模型的可行性。