Suppr超能文献

病例对照研究的有序子集分析。

Ordered subset analysis for case-control studies.

机构信息

Center for Human Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

Genet Epidemiol. 2010 Jul;34(5):407-17. doi: 10.1002/gepi.20489.

Abstract

Genetic heterogeneity, which may manifest on a population level as different frequencies of a specific disease susceptibility allele in different subsets of patients, is a common problem for candidate gene and genome-wide association studies of complex human diseases. The ordered subset analysis (OSA) was originally developed as a method to reduce genetic heterogeneity in the context of family-based linkage studies. Here, we have extended a previously proposed method (OSACC) for applying the OSA methodology to case-control datasets. We have evaluated the type I error and power of different OSACC permutation tests with an extensive simulation study. Case-control datasets were generated under two different models by which continuous clinical or environmental covariates may influence the relationship between susceptibility genotypes and disease risk. Our results demonstrate that OSACC is more powerful under some disease models than the commonly used trend test and a previously proposed joint test of main genetic and gene-environment interaction effects. An additional unique benefit of OSACC is its ability to identify a more informative subset of cases that may be subjected to more detailed molecular analysis, such as DNA sequencing of selected genomic regions to detect functional variants in linkage disequilibrium with the associated polymorphism. The OSACC-identified covariate threshold may also improve the power of an additional dataset to replicate previously reported associations that may only be detectable in a fraction of the original and replication datasets. In summary, we have demonstrated that OSACC is a useful method for improving SNP association signals in genetically heterogeneous datasets.

摘要

遗传异质性,即在不同患者亚组中特定疾病易感性等位基因的特定频率不同,这在复杂人类疾病的候选基因和全基因组关联研究中是一个常见的问题。有序子集分析(OSA)最初是作为一种方法在基于家系的连锁研究中减少遗传异质性而开发的。在这里,我们扩展了先前提出的用于将 OSA 方法应用于病例对照数据集的方法(OSACC)。我们通过广泛的模拟研究评估了不同 OSACC 置换检验的Ⅰ型错误和功效。病例对照数据集是根据两种不同的模型生成的,其中连续的临床或环境协变量可能影响易感性基因型与疾病风险之间的关系。我们的结果表明,在某些疾病模型下,OSACC 比常用的趋势检验和以前提出的主要遗传和基因-环境相互作用效果的联合检验更有效。OSACC 的另一个独特优势是它能够识别出更具信息量的病例子集,这些病例可能需要更详细的分子分析,例如选择基因组区域的 DNA 测序,以检测与相关多态性连锁不平衡的功能变体。OSACC 确定的协变量阈值也可能提高额外数据集的功效,以复制以前报道的关联,这些关联可能仅在原始和复制数据集的一部分中检测到。总之,我们已经证明 OSACC 是一种在遗传异质性数据集中改善 SNP 关联信号的有用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验