Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina 27710, USA.
Genet Epidemiol. 2009 Dec;33(8):657-67. doi: 10.1002/gepi.20417.
The large number of markers considered in a genome-wide association study (GWAS) has resulted in a simplification of analyses conducted. Most studies are analyzed one marker at a time using simple tests like the trend test. Methods that account for the special features of genetic association studies, yet remain computationally feasible for genome-wide analysis, are desirable as they may lead to increased power to detect associations. Haplotype sharing attempts to translate between population genetics and genetic epidemiology. Near a recent mutation that increases disease risk, haplotypes of case participants should be more similar to each other than haplotypes of control participants; conversely, the opposite pattern may be found near a recent mutation that lowers disease risk. We give computationally simple association tests based on haplotype sharing that can be easily applied to GWASs while allowing use of fast (but not likelihood-based) haplotyping algorithms and properly accounting for the uncertainty introduced by using inferred haplotypes. We also give haplotype-sharing analyses that adjust for population stratification. Applying our methods to a GWAS of Parkinson's disease, we find a genome-wide significant signal in the CAST gene that is not found by single-SNP methods. Further, a missing-data artifact that causes a spurious single-SNP association on chromosome 9 does not impact our test.
全基因组关联研究 (GWAS) 中考虑的大量标记导致分析变得简化。大多数研究一次分析一个标记,使用简单的测试,如趋势测试。希望能够找到既能考虑遗传关联研究的特殊特征,又能在基因组范围内进行计算的方法,因为它们可能会提高检测关联的能力。单倍型共享试图在群体遗传学和遗传流行病学之间进行转换。在最近增加疾病风险的突变附近,病例参与者的单倍型应该比对照参与者的单倍型更相似;相反,在最近降低疾病风险的突变附近可能会发现相反的模式。我们给出了基于单倍型共享的计算上简单的关联测试,这些测试可以很容易地应用于 GWAS,同时允许使用快速(但不是基于似然的)单倍型算法,并正确考虑使用推断的单倍型引入的不确定性。我们还提供了调整群体分层的单倍型共享分析。将我们的方法应用于帕金森病的 GWAS,我们在 CAST 基因中发现了一个全基因组显著信号,这是单 SNP 方法无法发现的。此外,染色体 9 上的一个缺失数据伪影导致虚假的单 SNP 关联,不会影响我们的测试。