Suppr超能文献

从 CE-TOFMS 数据中的精确质量、迁移时间预测和同位素模式信息预测代谢物身份。

Prediction of metabolite identity from accurate mass, migration time prediction and isotopic pattern information in CE-TOFMS data.

机构信息

Institute for Advanced Biosciences, Keio University, Yamagata, Japan.

出版信息

Electrophoresis. 2010 Jul;31(14):2311-8. doi: 10.1002/elps.200900584.

Abstract

CE-TOFMS is a powerful method for profiling charged metabolites. However, the limited availability of metabolite standards hinders the process of identifying compounds from detected features in CE-TOFMS data sets. To overcome this problem, we developed a method to identify unknown peaks based on the predicted migration time (t(m)) and accurate m/z values. We developed a predictive model using 375 standard cationic metabolites and support vector regression. The model yielded good correlations between the predicted and measured t(m) (R=0.952 and 0.905 using complete and cross-validation data sets, respectively). Using the trained model, we subsequently predicted the t(m) for 2938 metabolites available from the public databases and assigned tentative identities to noise-filtered features in human urine samples. While 38.9% of the peaks were assigned metabolite names by matching with the standard library alone, the proportion increased to 52.2%. The proposed methodology increases the value of metabolomic data sets obtained from CE-TOFMS profiling.

摘要

CE-TOFMS 是一种强大的带电代谢物分析方法。然而,代谢物标准品的有限可用性阻碍了从 CE-TOFMS 数据集中检测到的特征中鉴定化合物的过程。为了克服这个问题,我们开发了一种基于预测迁移时间(t(m))和准确 m/z 值来识别未知峰的方法。我们使用 375 个标准阳离子代谢物和支持向量回归开发了一个预测模型。该模型在预测和测量的 t(m)之间产生了很好的相关性(使用完整和交叉验证数据集的 R 值分别为 0.952 和 0.905)。使用训练好的模型,我们随后预测了来自公共数据库的 2938 种代谢物的 t(m),并对人尿液样本中经过噪声过滤的特征进行了暂定鉴定。虽然仅通过与标准库匹配就可以将 38.9%的峰分配到代谢物名称,但这一比例增加到了 52.2%。所提出的方法提高了从 CE-TOFMS 分析获得的代谢组学数据集的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验