Suppr超能文献

基于质谱的代谢组学数据的可重复性。

Reproducibility of mass spectrometry based metabolomics data.

机构信息

Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, USA.

Eberly College of Science, Penn State University, State College, USA.

出版信息

BMC Bioinformatics. 2021 Sep 7;22(1):423. doi: 10.1186/s12859-021-04336-9.

Abstract

BACKGROUND

Assessing the reproducibility of measurements is an important first step for improving the reliability of downstream analyses of high-throughput metabolomics experiments. We define a metabolite to be reproducible when it demonstrates consistency across replicate experiments. Similarly, metabolites which are not consistent across replicates can be labeled as irreproducible. In this work, we introduce and evaluate the use (Ma)ximum (R)ank (R)eproducibility (MaRR) to examine reproducibility in mass spectrometry-based metabolomics experiments. We examine reproducibility across technical or biological samples in three different mass spectrometry metabolomics (MS-Metabolomics) data sets.

RESULTS

We apply MaRR, a nonparametric approach that detects the change from reproducible to irreproducible signals using a maximal rank statistic. The advantage of using MaRR over model-based methods that it does not make parametric assumptions on the underlying distributions or dependence structures of reproducible metabolites. Using three MS Metabolomics data sets generated in the multi-center Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPD) study, we applied the MaRR procedure after data processing to explore reproducibility across technical or biological samples. Under realistic settings of MS-Metabolomics data, the MaRR procedure effectively controls the False Discovery Rate (FDR) when there was a gradual reduction in correlation between replicate pairs for less highly ranked signals. Simulation studies also show that the MaRR procedure tends to have high power for detecting reproducible metabolites in most situations except for smaller values of proportion of reproducible metabolites. Bias (i.e., the difference between the estimated and the true value of reproducible signal proportions) values for simulations are also close to zero. The results reported from the real data show a higher level of reproducibility for technical replicates compared to biological replicates across all the three different datasets. In summary, we demonstrate that the MaRR procedure application can be adapted to various experimental designs, and that the nonparametric approach performs consistently well.

CONCLUSIONS

This research was motivated by reproducibility, which has proven to be a major obstacle in the use of genomic findings to advance clinical practice. In this paper, we developed a data-driven approach to assess the reproducibility of MS-Metabolomics data sets. The methods described in this paper are implemented in the open-source R package marr, which is freely available from Bioconductor at http://bioconductor.org/packages/marr .

摘要

背景

评估测量的可重复性是提高高通量代谢组学实验下游分析可靠性的重要第一步。我们将在重复实验中表现出一致性的代谢物定义为可重现的,而在重复实验中不一致的代谢物则可以标记为不可重现的。在这项工作中,我们引入并评估了使用(Ma)ximum (R)ank (R)eproducibility(MaRR)来检查基于质谱的代谢组学实验中的可重复性。我们在三个不同的基于质谱的代谢组学(MS-Metabolomics)数据集中检查了技术或生物学样本之间的可重复性。

结果

我们应用了 MaRR,这是一种非参数方法,它使用最大秩统计量来检测从可重现到不可重现信号的变化。与基于模型的方法相比,MaRR 的优势在于它不对可重现代谢物的基础分布或依赖结构做出参数假设。我们使用在多中心遗传流行病学慢性阻塞性肺疾病(COPD)研究中生成的三个 MS 代谢组学数据集,在数据处理后应用 MaRR 程序来探索技术或生物学样本之间的可重复性。在 MS 代谢组学数据的实际设置下,当重复对之间的相关性逐渐降低时,MaRR 程序可以有效地控制假发现率(FDR),对于排名较低的信号更是如此。模拟研究还表明,MaRR 程序在大多数情况下都具有很高的检测可重现代谢物的功效,除了可重现代谢物比例较小的情况。模拟的偏置(即可重现信号比例的估计值与真实值之间的差异)值也接近零。从真实数据报告的结果显示,在所有三个不同的数据集上,技术重复比生物重复具有更高的可重复性。总之,我们证明了 MaRR 程序的应用可以适应各种实验设计,并且这种非参数方法表现一致良好。

结论

本研究的动机是可重复性,这已被证明是将基因组发现应用于临床实践的主要障碍。在本文中,我们开发了一种数据驱动的方法来评估 MS 代谢组学数据集的可重复性。本文中描述的方法已在开放源代码 R 包 marr 中实现,该包可从 Bioconductor 在 http://bioconductor.org/packages/marr 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/8424977/1dbe333998e3/12859_2021_4336_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验