Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA.
Biochemistry. 2010 Jul 27;49(29):6282-9. doi: 10.1021/bi100753s.
Protein disulfide isomerase (PDI), the chief endoplasmic reticulum (ER) resident oxidoreductase chaperone, is known to catalyze the maturation of disulfide bond-containing proteins primarily through oxidation and isomerization functions. The rate-determining step in the oxidative regeneration path of disulfide bond-containing proteins generally couples chemical thiol-disulfide-exchange reactions to a physical conformational folding reaction. We have determined the impact of PDI and its subdomains on the rate-determining step in ribonuclease A folding and on the physical structure-forming step of select ER-processed proteins including RNase A. This was facilitated through application of a novel chemical tool to exclusively populate native disulfide-containing intermediates in unstructured forms. The described biochemical inroad permits a deconvoluted study of the physical half-process in the rate-determining step from its chemical counterpart. Analysis of folding kinetics of RNase A and other proteins reveals that the highly evolved oxidoreductase activity of PDI masks its chaperone-like activity, impedes conformational folding of ER-processed proteins, and limits its potential to accelerate the rate-determining step in oxidative regeneration. Implications of the heretofore unknown and anomalous self-limiting behavior of PDI are discussed in the context of oxidative maturation and misfolding in vivo.
蛋白质二硫键异构酶(PDI)是内质网(ER)中主要的氧化还原酶伴侣,已知其主要通过氧化和异构化功能来催化二硫键含蛋白的成熟。二硫键含蛋白的氧化再生途径中的限速步骤通常将化学硫醇-二硫键交换反应与物理构象折叠反应偶联。我们已经确定了 PDI 及其亚结构域对核糖核酸酶 A 折叠的限速步骤以及包括核糖核酸酶 A 在内的选择 ER 加工蛋白的物理结构形成步骤的影响。这是通过应用一种新的化学工具来专门形成无结构形式的天然二硫键中间体来实现的。所描述的生化方法允许对限速步骤的物理半过程进行与其化学对应物分开的研究。对核糖核酸酶 A 和其他蛋白质的折叠动力学分析表明,PDI 高度进化的氧化还原酶活性掩盖了其伴侣样活性,阻碍了 ER 加工蛋白的构象折叠,并限制了其加速氧化再生限速步骤的潜力。在体内氧化成熟和错误折叠的背景下,讨论了迄今为止未知和异常自限性行为的 PDI 的影响。