Suppr超能文献

项目偏好参数的分组排名模型。

A grouped ranking model for item preference parameter.

机构信息

School of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.

出版信息

Neural Comput. 2010 Sep 1;22(9):2417-51. doi: 10.1162/NECO_a_00008.

Abstract

Given a set of rating data for a set of items, determining preference levels of items is a matter of importance. Various probability models have been proposed to solve this task. One such model is the Plackett-Luce model, which parameterizes the preference level of each item by a real value. In this letter, the Plackett-Luce model is generalized to cope with grouped ranking observations such as movie or restaurant ratings. Since it is difficult to maximize the likelihood of the proposed model directly, a feasible approximation is derived, and the em algorithm is adopted to find the model parameter by maximizing the approximate likelihood which is easily evaluated. The proposed model is extended to a mixture model, and two applications are proposed. To show the effectiveness of the proposed model, numerical experiments with real-world data are carried out.

摘要

给定一组物品的评分数据,确定物品的偏好水平是很重要的。已经提出了各种概率模型来解决这个任务。其中一个模型是 Plackett-Luce 模型,它通过实数值来参数化每个项目的偏好水平。在这封信中,Plackett-Luce 模型被推广到处理分组排名观察,如电影或餐厅评分。由于直接最大化模型的似然性是困难的,因此导出了一个可行的近似值,并通过最大化易于评估的近似似然性来采用 EM 算法来找到模型参数。所提出的模型被扩展到混合模型,并提出了两个应用。为了展示所提出模型的有效性,使用真实数据进行了数值实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验