Suppr超能文献

低 LET 和高 LET 辐射暴露后 γ-H2AX 荧光衰减动力学的差异。

Differences in the kinetics of gamma-H2AX fluorescence decay after exposure to low and high LET radiation.

机构信息

Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, München, Germany.

出版信息

Int J Radiat Biol. 2010 Aug;86(8):682-91. doi: 10.3109/09553001003734543.

Abstract

PURPOSE

In order to obtain more insight into heavy ion tumour therapy, some features of the underlying molecular mechanisms controlling the cellular response to high linear energy transfer (LET) radiation are currently analysed.

MATERIALS AND METHODS

We analysed the decay of the integrated fluorescence intensity of gamma-H2AX (phosphorylated histone H2AX) which is thought to reflect the repair kinetics of radiation-induced DNA double-strand breaks (DSB) using Laser-Scanning-Cytometry. Asynchronous human HeLa cells were irradiated with a single dose of either 1.89 Gy of 55 MeV carbon ions or 5 Gy of 70 kV X-rays.

RESULTS

Measurements of the gamma-H2AX-intensities from 15-60 min resulted in a 16 % decrease for carbon ions and in a 43 % decrease for X-rays. After 21 h, the decrease was 77 % for carbon ions and 85 % for X-rays. The corresponding time-effect relationship was fitted by a bi-exponential function showing a fast and a slow component with identical half-life values for both radiation qualities being 24 +/- 4 min and 13.9 +/- 0.7 h, respectively. Apparent differences in the kinetics following high and low LET irradiation could completely be attributed to quantitative differences in their contributions, with the slow component being responsible for 47 % of the repair after exposure to X-rays as compared to 80 % after carbon ion irradiation.

CONCLUSION

gamma-H2AX loss kinetics follows a bi-exponential decline with two definite decay times independent of LET. The higher contribution of the slow component determined for carbon ion exposure is thought to reflect the increased amount of complex DSB induced by high LET radiation.

摘要

目的

为了更深入地了解重离子肿瘤治疗,目前正在分析控制细胞对高线性能量转移(LET)辐射反应的基础分子机制的一些特征。

材料和方法

我们使用激光扫描细胞仪分析了 γ-H2AX(磷酸化组蛋白 H2AX)的积分荧光强度的衰减,该强度被认为反映了辐射诱导的 DNA 双链断裂(DSB)的修复动力学。用 55 MeV 碳离子单次照射或 70 kV X 射线单次照射异步人 HeLa 细胞。

结果

在 15-60 分钟测量 γ-H2AX 强度,导致碳离子减少 16%,X 射线减少 43%。21 小时后,碳离子减少 77%,X 射线减少 85%。相应的时间-效应关系通过双指数函数拟合,显示两种辐射质量的快速和缓慢组分具有相同的半衰期值,分别为 24±4 分钟和 13.9±0.7 小时。高 LET 和低 LET 照射后动力学的明显差异可以完全归因于它们贡献的定量差异,其中慢组分负责 X 射线照射后修复的 47%,而碳离子照射后修复的 80%。

结论

γ-H2AX 丢失动力学呈双指数下降,具有两个独立于 LET 的明确衰减时间。对于碳离子照射,慢组分的贡献较高,这被认为反映了高 LET 辐射诱导的复杂 DSB 数量增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验