Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
IEEE Trans Biomed Eng. 2012 May;59(5):1205-18. doi: 10.1109/TBME.2010.2053540. Epub 2010 Jun 21.
Diagnosis of prostate cancer (CaP) currently involves examining tissue samples for CaP presence and extent via a microscope, a time-consuming and subjective process. With the advent of digital pathology, computer-aided algorithms can now be applied to disease detection on digitized glass slides. The size of these digitized histology images (hundreds of millions of pixels) presents a formidable challenge for any computerized image analysis program. In this paper, we present a boosted Bayesian multiresolution (BBMR) system to identify regions of CaP on digital biopsy slides. Such a system would serve as an important preceding step to a Gleason grading algorithm, where the objective would be to score the invasiveness and severity of the disease. In the first step, our algorithm decomposes the whole-slide image into an image pyramid comprising multiple resolution levels. Regions identified as cancer via a Bayesian classifier at lower resolution levels are subsequently examined in greater detail at higher resolution levels, thereby allowing for rapid and efficient analysis of large images. At each resolution level, ten image features are chosen from a pool of over 900 first-order statistical, second-order co-occurrence, and Gabor filter features using an AdaBoost ensemble method. The BBMR scheme, operating on 100 images obtained from 58 patients, yielded: 1) areas under the receiver operating characteristic curve (AUC) of 0.84, 0.83, and 0.76, respectively, at the lowest, intermediate, and highest resolution levels and 2) an eightfold savings in terms of computational time compared to running the algorithm directly at full (highest) resolution. The BBMR model outperformed (in terms of AUC): 1) individual features (no ensemble) and 2) a random forest classifier ensemble obtained by bagging multiple decision tree classifiers. The apparent drop-off in AUC at higher image resolutions is due to lack of fine detail in the expert annotation of CaP and is not an artifact of the classifier. The implicit feature selection done via the AdaBoost component of the BBMR classifier reveals that different classes and types of image features become more relevant for discriminating between CaP and benign areas at different image resolutions.
目前,前列腺癌(CaP)的诊断涉及通过显微镜检查组织样本以确定 CaP 的存在和范围,这是一个耗时且主观的过程。随着数字病理学的出现,现在可以将计算机辅助算法应用于数字化载玻片上的疾病检测。这些数字化组织学图像的大小(数亿像素)对任何计算机化图像分析程序来说都是一个巨大的挑战。在本文中,我们提出了一种基于提升贝叶斯多分辨率(BBMR)的系统,用于识别数字活检切片上的 CaP 区域。这样的系统将作为 Gleason 分级算法的重要前置步骤,其目的是对疾病的侵袭性和严重程度进行评分。在第一步中,我们的算法将全幻灯片图像分解为包含多个分辨率级别的图像金字塔。通过在较低分辨率级别使用贝叶斯分类器识别为癌症的区域,随后在更高分辨率级别进行更详细的检查,从而可以快速有效地分析大型图像。在每个分辨率级别上,从 900 多个一阶统计、二阶共生和 Gabor 滤波器特征的特征池中选择十个图像特征,使用 AdaBoost 集成方法。BBMR 方案在 58 名患者的 100 张图像上运行,结果分别为:1)在最低、中间和最高分辨率级别下,接收器操作特征曲线(AUC)的面积分别为 0.84、0.83 和 0.76;2)与直接在全(最高)分辨率下运行算法相比,计算时间节省了 8 倍。BBMR 模型在 AUC 方面优于:1)单个特征(无集成)和 2)通过袋装多个决策树分类器获得的随机森林分类器集成。在更高的图像分辨率下 AUC 明显下降是由于 CaP 的专家注释缺乏细节,而不是分类器的伪影。通过 BBMR 分类器的 AdaBoost 组件进行的隐式特征选择表明,在不同的图像分辨率下,不同的类别和类型的图像特征对于区分 CaP 和良性区域变得更加相关。