Suppr超能文献

泌尿生殖病理学实践中计算病理学工具的最新进展:泌尿生殖病理学会(GUPS)的一篇综述文章。

An update on computational pathology tools for genitourinary pathology practice: A review paper from the Genitourinary Pathology Society (GUPS).

作者信息

Parwani Anil V, Patel Ankush, Zhou Ming, Cheville John C, Tizhoosh Hamid, Humphrey Peter, Reuter Victor E, True Lawrence D

机构信息

The Ohio State University, Columbus, Ohio, USA.

The Ohio State University, 2441 60 Ave SE, Mercer Island, Washington 98040, USA.

出版信息

J Pathol Inform. 2022 Dec 30;14:100177. doi: 10.1016/j.jpi.2022.100177. eCollection 2023.

Abstract

Machine learning has been leveraged for image analysis applications throughout a multitude of subspecialties. This position paper provides a perspective on the evolutionary trajectory of practical deep learning tools for genitourinary pathology through evaluating the most recent iterations of such algorithmic devices. Deep learning tools for genitourinary pathology demonstrate potential to enhance prognostic and predictive capacity for tumor assessment including grading, staging, and subtype identification, yet limitations in data availability, regulation, and standardization have stymied their implementation.

摘要

机器学习已被应用于众多亚专业的图像分析领域。本立场文件通过评估此类算法设备的最新迭代,对泌尿生殖系统病理学实用深度学习工具的发展轨迹提供了一种观点。泌尿生殖系统病理学的深度学习工具显示出增强肿瘤评估的预后和预测能力的潜力,包括分级、分期和亚型识别,但数据可用性、监管和标准化方面的限制阻碍了它们的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a48/9841212/56cc0673c359/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验