Parwani Anil V, Patel Ankush, Zhou Ming, Cheville John C, Tizhoosh Hamid, Humphrey Peter, Reuter Victor E, True Lawrence D
The Ohio State University, Columbus, Ohio, USA.
The Ohio State University, 2441 60 Ave SE, Mercer Island, Washington 98040, USA.
J Pathol Inform. 2022 Dec 30;14:100177. doi: 10.1016/j.jpi.2022.100177. eCollection 2023.
Machine learning has been leveraged for image analysis applications throughout a multitude of subspecialties. This position paper provides a perspective on the evolutionary trajectory of practical deep learning tools for genitourinary pathology through evaluating the most recent iterations of such algorithmic devices. Deep learning tools for genitourinary pathology demonstrate potential to enhance prognostic and predictive capacity for tumor assessment including grading, staging, and subtype identification, yet limitations in data availability, regulation, and standardization have stymied their implementation.
机器学习已被应用于众多亚专业的图像分析领域。本立场文件通过评估此类算法设备的最新迭代,对泌尿生殖系统病理学实用深度学习工具的发展轨迹提供了一种观点。泌尿生殖系统病理学的深度学习工具显示出增强肿瘤评估的预后和预测能力的潜力,包括分级、分期和亚型识别,但数据可用性、监管和标准化方面的限制阻碍了它们的应用。