Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
Proc Biol Sci. 2010 Oct 22;277(1697):3055-64. doi: 10.1098/rspb.2010.0707. Epub 2010 Jun 23.
Understanding the adaptations that allow species to live in temporally variable environments is essential for predicting how they may respond to future environmental change. Variation at the intergenerational scale can allow the evolution of bet-hedging strategies: a novel genotype may be favoured over an alternative with higher arithmetic mean fitness if the new genotype experiences a sufficiently large reduction in temporal fitness variation; the successful genotype is said to have traded off its mean and variance in fitness in order to 'hedge its evolutionary bets'. We review the evidence for bet-hedging in a range of simple plant systems that have proved particularly tractable for studying bet-hedging under natural conditions. We begin by outlining the essential theory, reiterating the important distinction between conservative and diversified bet-hedging strategies. We then examine the theory and empirical evidence for the canonical example of bet-hedging: diversification via dormant seeds in annual plants. We discuss the complications that arise when moving beyond this simple case to consider more complex life-history traits, such as flowering size in semelparous perennial plants. Finally, we outline a framework for accommodating these complications, emphasizing the central role that model-based approaches can play.
了解使物种能够在时间变化的环境中生存的适应机制对于预测它们可能如何应对未来的环境变化至关重要。在代际尺度上的变异可以允许出现“风险分摊”策略的进化:如果新基因型经历了足够大的时间适应性变化,那么相对于具有更高算术平均值适应性的替代基因型,新基因型可能会受到青睐;成功的基因型被认为在适应性的均值和方差之间进行了权衡,以便“分摊其进化赌注”。我们回顾了在一系列已经被证明特别适合在自然条件下研究风险分摊的简单植物系统中存在风险分摊的证据。我们首先概述了基本理论,重申了保守和多样化的风险分摊策略之间的重要区别。然后,我们考察了经典风险分摊例子的理论和实证证据:通过一年生植物中的休眠种子进行多样化。我们讨论了当超越这个简单情况,考虑更复杂的生活史特征(如多年生植物的单次开花大小)时出现的复杂情况。最后,我们概述了一个框架来容纳这些复杂情况,强调了基于模型的方法可以发挥的核心作用。