Suppr超能文献

微泡的组成、性质及生物医学应用

Microbubble Compositions, Properties and Biomedical Applications.

作者信息

Sirsi Shashank, Borden Mark

机构信息

Department of Chemical Engineering, Columbia University, 500 W 120 ST, New York, NY 10027.

出版信息

Bubble Sci Eng Technol. 2009 Nov;1(1-2):3-17. doi: 10.1179/175889709X446507.

Abstract

Over the last decade, there has been significant progress towards the development of microbubbles as theranostics for a wide variety of biomedical applications. The unique ability of microbubbles to respond to ultrasound makes them useful agents for contrast ultrasound imaging, molecular imaging, and targeted drug and gene delivery. The general composition of a microbubble is a gas core stabilized by a shell comprised of proteins, lipids or polymers. Each type of microbubble has its own unique advantages and can be tailored for specialized functions. In this review, different microbubbles compositions and physiochemical properties are discussed in the context of current progress towards developing novel constructs for biomedical applications, with specific emphasis on molecular imaging and targeted drug/gene delivery.

摘要

在过去十年中,微泡作为用于广泛生物医学应用的诊疗试剂,其开发取得了重大进展。微泡对超声作出反应的独特能力使其成为超声造影成像、分子成像以及靶向药物和基因递送的有用试剂。微泡的一般组成是由蛋白质、脂质或聚合物构成的壳层所稳定的气体核心。每种类型的微泡都有其独特的优势,并且可以针对特定功能进行定制。在本综述中,将在开发用于生物医学应用的新型构建体的当前进展背景下,讨论不同的微泡组成和理化性质,特别强调分子成像和靶向药物/基因递送。

相似文献

1
Microbubble Compositions, Properties and Biomedical Applications.
Bubble Sci Eng Technol. 2009 Nov;1(1-2):3-17. doi: 10.1179/175889709X446507.
2
Microbubbles: Revolutionizing Biomedical Applications with Tailored Therapeutic Precision.
Curr Pharm Des. 2023;29(44):3532-3545. doi: 10.2174/0113816128282478231219044000.
3
Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications.
Ultrasound Med Biol. 2019 Feb;45(2):301-343. doi: 10.1016/j.ultrasmedbio.2018.09.022. Epub 2018 Dec 5.
4
Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
Acc Chem Res. 2009 Jul 21;42(7):881-92. doi: 10.1021/ar8002442.
6
[Development of Microbubbles for Theranostics and Its Application in Brain Targeted Drug Delivery].
Yakugaku Zasshi. 2023;143(10):785-790. doi: 10.1248/yakushi.23-00108.
7
Quantitative Pharmacokinetics Reveal Impact of Lipid Composition on Microbubble and Nanoprogeny Shell Fate.
Adv Sci (Weinh). 2024 Jan;11(4):e2304453. doi: 10.1002/advs.202304453. Epub 2023 Nov 30.
8
WE-C-218-01: Ultrasound Contrast Agents.
Med Phys. 2012 Jun;39(6Part27):3953. doi: 10.1118/1.4736133.
9
Improving the Efficiency of Ultrasound and Microbubble Mediated Gene Delivery by Manipulation of Microbubble Lipid Composition.
ACS Appl Bio Mater. 2025 Apr 21;8(4):3227-3238. doi: 10.1021/acsabm.5c00033. Epub 2025 Mar 20.

引用本文的文献

1
Evaluating the efficacy of non-activated microbubble emulsions in biofilm removal from 3D-printed root canals.
Clin Oral Investig. 2025 Sep 16;29(10):452. doi: 10.1007/s00784-025-06554-4.
2
Dissipative Particle Dynamics Models of Encapsulated Microbubbles and Nanoscale Gas Vesicles for Biomedical Ultrasound Simulations.
ACS Appl Nano Mater. 2025 Aug 4;8(32):16053-16070. doi: 10.1021/acsanm.5c02783. eCollection 2025 Aug 15.
3
Harnessing chemically crosslinked microbubble clusters using deep learning for ultrasound contrast imaging.
J Med Imaging (Bellingham). 2025 Jul;12(4):047001. doi: 10.1117/1.JMI.12.4.047001. Epub 2025 Jul 12.
4
Regulation of the brain tumor microenvironment by focused ultrasound.
Mol Ther Oncol. 2025 May 14;33(2):200994. doi: 10.1016/j.omton.2025.200994. eCollection 2025 Jun 18.
5
Translational motions and radial oscillations of a polymer-coated microbubble in the focal cross-section of focused acoustic vortex.
Ultrason Sonochem. 2025 Aug;119:107405. doi: 10.1016/j.ultsonch.2025.107405. Epub 2025 May 29.
6
Mechanical Properties of Medical Microbubbles and Echogenic Liposomes-A Review.
Micromachines (Basel). 2025 May 17;16(5):588. doi: 10.3390/mi16050588.
8
Organ preservation: current limitations and optimization approaches.
Front Med (Lausanne). 2025 Mar 26;12:1566080. doi: 10.3389/fmed.2025.1566080. eCollection 2025.
9
Oxygen dynamics and delivery strategies to enhance beta cell replacement therapy.
Am J Physiol Cell Physiol. 2025 May 1;328(5):C1667-C1684. doi: 10.1152/ajpcell.00984.2024. Epub 2025 Apr 9.
10
Drug self-delivery systems: A comprehensive review on small molecule nanodrugs.
Bioimpacts. 2024 Oct 27;15:30161. doi: 10.34172/bi.30161. eCollection 2025.

本文引用的文献

2
Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering.
Phys Med Biol. 2009 Mar 21;54(6):R27-57. doi: 10.1088/0031-9155/54/6/R01. Epub 2009 Feb 19.
3
Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation.
Circ Res. 2009 Mar 13;104(5):679-87. doi: 10.1161/CIRCRESAHA.108.183806. Epub 2009 Jan 22.
4
Microbubbles as ultrasound triggered drug carriers.
J Pharm Sci. 2009 Jun;98(6):1935-61. doi: 10.1002/jps.21571.
5
Polymer-based gene delivery: a current review on the uptake and intracellular trafficking of polyplexes.
Curr Gene Ther. 2008 Oct;8(5):335-52. doi: 10.2174/156652308786071014.
6
Ultrasound targeted microbubble destruction for drug and gene delivery.
Expert Opin Drug Deliv. 2008 Oct;5(10):1121-38. doi: 10.1517/17425247.5.10.1121.
7
Ultrasonic synthesis of stable, functional lysozyme microbubbles.
Langmuir. 2008 Sep 16;24(18):10078-83. doi: 10.1021/la801093q. Epub 2008 Aug 19.
8
Interfacial polygonal nanopatterning of stable microbubbles.
Science. 2008 May 30;320(5880):1198-201. doi: 10.1126/science.1154601.
9
Response of contrast agents to ultrasound.
Adv Drug Deliv Rev. 2008 Jun 30;60(10):1117-36. doi: 10.1016/j.addr.2008.03.011. Epub 2008 Apr 9.
10
Microbubbles in ultrasound-triggered drug and gene delivery.
Adv Drug Deliv Rev. 2008 Jun 30;60(10):1153-66. doi: 10.1016/j.addr.2008.03.005. Epub 2008 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验