Suppr超能文献

[(1,5-COD)Ir(mu-O2C8H15)](2)和 AlEt3 制备的铱 Ziegler 型加氢催化剂:存在 Ir(n)物种和纳米颗粒作为最快催化剂的光谱和动力学证据。

Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(mu-O2C8H15)](2) and AlEt3: spectroscopic and kinetic evidence for the Ir(n) species present and for nanoparticles as the fastest catalyst.

机构信息

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.

出版信息

Inorg Chem. 2010 Sep 6;49(17):8131-47. doi: 10.1021/ic101237c.

Abstract

Ziegler-type hydrogenation catalysts, those made from a group 8-10 transition metal precatalyst and an AlR(3) cocatalyst, are often used for large scale industrial polymer hydrogenation; note that Ziegler-type hydrogenation catalysts are not the same as Ziegler-Natta polymerization catalysts. A review of prior studies of Ziegler-type hydrogenation catalysts (Alley et al. J. Mol. Catal. A: Chem. 2010, 315, 1-27) reveals that a approximately 50 year old problem is identifying the metal species present before, during, and after Ziegler-type hydrogenation catalysis, and which species are the kinetically best, fastest catalysts--that is, which species are the true hydrogenation catalysts. Also of significant interest is whether what we have termed "Ziegler nanoclusters" are present and what their relative catalytic activity is. Reported herein is the characterization of an Ir Ziegler-type hydrogenation catalyst, a valuable model (vide infra) for the Co-based industrial Ziegler-type hydrogenation catalyst, made from the crystallographically characterized (1,5-COD)Ir(mu-O(2)C(8)H(15)) precatalyst plus AlEt(3). Characterization of this Ir model system is accomplished before and after catalysis using a battery of physical methods including Z-contrast scanning transmission electron microscopy (STEM), high resolution (HR)TEM, and X-ray absorption fine structure (XAFS) spectroscopy. Kinetic studies plus Hg(0) poisoning experiments are then employed to probe which species are the fastest catalysts. The main findings herein are that (i) a combination of the catalyst precursors (1,5-COD)Ir(mu-O(2)C(8)H(15)) and AlEt(3) gives catalytically active solutions containing a broad distribution of Ir(n) species ranging from monometallic Ir complexes to nanometer scale, noncrystalline Ir(n) nanoclusters (up to Ir(approximately 100) by Z-contrast STEM) with the estimated mean Ir species being 0.5-0.7 nm, Ir(approximately 4-15) clusters considering the similar, but not identical results from the different analytical methods; furthermore, (ii) the mean Ir(n) species are practically the same regardless of the Al/Ir ratio employed, suggesting that the observed changes in catalytic activity at different Al/Ir ratios are primarily the result of changes in the form or function of the Al-derived component (and not due to significant AlEt(3)-induced changes in initial Ir(n) nuclearity). However (iii), during hydrogenation, a shift in the population of Ir species toward roughly 1.0-1.6 nm, fcc Ir(0)(approximately 40-150), Ziegler nanoclusters occurs with, significantly, (iv) a concomitant increase in catalytic activity. Importantly, and although catalysis by discrete subnanometer Ir species is not ruled out by this study, (v) the increases in activity with increased nanocluster size, plus Hg(0) poisoning studies, provide the best evidence to date that the approximately 1.0-1.6 nm, fcc Ir(0)(approximately 40-150), heterogeneous Ziegler nanoclusters are the fastest catalysts in this industrially related catalytic hydrogenation system (and in the simplest, Ockham's Razor interpretation of the data). In addition, (vi) Ziegler nanoclusters are confirmed to be an unusual, hydrocarbon-soluble, highly coordinatively unsaturated, Lewis-acid containing, and highly catalytically active type of nanocluster for use in other catalytic applications and other areas.

摘要

齐格勒型氢化催化剂,由第 8-10 族过渡金属前催化剂和 AlR(3)共催化剂制成,常用于大规模工业聚合物氢化;请注意,齐格勒型氢化催化剂与齐格勒-纳塔聚合催化剂不同。对先前研究的齐格勒型氢化催化剂的综述(Alley 等人,J. Mol. Catal. A: Chem. 2010, 315, 1-27)表明,一个大约 50 年的问题是确定在齐格勒型氢化催化前后存在的金属物种,以及哪些物种是动力学上最好的、最快的催化剂,即哪些物种是真正的氢化催化剂。同样值得关注的是,我们所称的“齐格勒纳米团簇”是否存在以及它们的相对催化活性如何。本文报道了一种 Ir 齐格勒型氢化催化剂的表征,这是一种有价值的模型(下文),用于研究基于 Co 的工业齐格勒型氢化催化剂,由结晶学表征的 (1,5-COD)Ir(mu-O(2)C(8)H(15)) 前催化剂和 AlEt(3) 制成。使用一系列物理方法,包括 Z 对比度扫描透射电子显微镜(STEM)、高分辨率(HR)TEM 和 X 射线吸收精细结构(XAFS)光谱,在催化前后对该 Ir 模型系统进行了表征。然后进行动力学研究和 Hg(0) 中毒实验,以探究哪些物种是最快的催化剂。本文的主要发现是:(i) 催化剂前体 (1,5-COD)Ir(mu-O(2)C(8)H(15)) 和 AlEt(3) 的组合可产生催化活性溶液,其中含有从单核 Ir 配合物到纳米尺度、非晶态 Ir(n)纳米团簇(用 Z 对比度 STEM 估计为 Ir(approximately 100))的 Ir(n)物种的广泛分布,平均 Ir 物种估计为 0.5-0.7nm,考虑到不同分析方法的类似但不相同的结果,Ir(approximately 4-15)团簇;此外,(ii) 无论使用的 Al/Ir 比如何,平均 Ir(n)物种几乎相同,这表明在不同 Al/Ir 比下观察到的催化活性变化主要是由于 Al 衍生成分的形式或功能的变化(而不是由于 AlEt(3) 诱导的初始 Ir(n)核性的显著变化)。然而,(iii) 在氢化过程中,Ir 物种的分布向大约 1.0-1.6nm、fcc Ir(0)(approximately 40-150)、齐格勒纳米团簇移动,同时,(iv) 催化活性显著增加。重要的是,尽管这项研究不能排除离散的亚纳米 Ir 物种的催化作用,但(v) 随着纳米团簇尺寸的增加而增加的活性,加上 Hg(0) 中毒研究,为迄今为止提供了最佳证据,证明大约 1.0-1.6nm、fcc Ir(0)(approximately 40-150)、非均相齐格勒纳米团簇是该工业相关催化氢化系统中最快的催化剂(以及在数据的最简单的奥卡姆剃刀解释中)。此外,(vi) 确认齐格勒纳米团簇是一种用于其他催化应用和其他领域的不寻常的、烃溶性的、高度配位不饱和的、路易斯酸型的、高催化活性的纳米团簇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验