Suppr超能文献

由 Co(正癸酸酯)2 或 Ni(异辛酸酯)2 和 AlEt3 制成的工业齐格勒型氢化催化剂:纳米簇和亚纳米簇或更大的齐格勒-纳米簇催化的证据。

Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis.

机构信息

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.

出版信息

Langmuir. 2011 May 17;27(10):6279-94. doi: 10.1021/la200053f. Epub 2011 Apr 11.

Abstract

Ziegler-type hydrogenation catalysts are important for industrial processes, namely, the large-scale selective hydrogenation of styrenic block copolymers. Ziegler-type hydrogenation catalysts are composed of a group 8-10 transition metal precatalyst plus an alkylaluminum cocatalyst (and they are not the same as Ziegler-Natta polymerization catalysts). However, for ∼50 years two unsettled issues central to Ziegler-type hydrogenation catalysis are the nature of the metal species present after catalyst synthesis, and whether the species primarily responsible for catalytic hydrogenation activity are homogeneous (e.g., monometallic complexes) or heterogeneous (e.g., Ziegler nanoclusters defined as metal nanoclusters made from combination of Ziegler-type hydrogenation catalyst precursors). A critical review of the existing literature (Alley et al. J. Mol. Catal. A: Chem. 2010, 315, 1-27) and a recently published study using an Ir model system (Alley et al. Inorg. Chem. 2010, 49, 8131-8147) help to guide the present investigation of Ziegler-type hydrogenation catalysts made from the industrially favored precursors Co(neodecanoate)(2) or Ni(2-ethylhexanoate)(2), plus AlEt(3). The approach and methods used herein parallel those used in the study of the Ir model system. Specifically, a combination of Z-contrast scanning transmission electron microscopy (STEM), matrix assisted laser desorption ionization mass spectrometry (MALDI MS), and X-ray absorption fine structure (XAFS) spectroscopy are used to characterize the transition metal species both before and after hydrogenation. Kinetic studies including Hg(0) poisoning experiments are utilized to test which species are the most active catalysts. The main findings are that, both before and after catalytic cyclohexene hydrogenation, the species present comprise a broad distribution of metal cluster sizes from subnanometer to nanometer scale particles, with estimated mean cluster diameters of about 1 nm for both Co and Ni. The XAFS results also imply that the catalyst solutions are a mixture of the metal clusters described above, plus unreduced metal ions. The kinetics-based Hg(0) poisoning evidence suggests that Co and Ni Ziegler nanoclusters (i.e., M(≥4)) are the most active Ziegler-type hydrogenation catalysts in these industrial systems. Overall, the novelty and primary conclusions of this study are as follows: (i) this study examines Co- and Ni-based catalysts made from the actual industrial precursor materials, catalysts that are notoriously problematic regarding their characterization; (ii) the Z-contrast STEM results reported herein represent, to our knowledge, the best microscopic analysis of the industrial Co and Ni Ziegler-type hydrogenation catalysts; (iii) this study is the first explicit application of an established method, using multiple analytical methods and kinetics-based studies, for distinguishing homogeneous from heterogeneous catalysis in these Ziegler-type systems; and (iv) this study parallels the successful study of an Ir model Ziegler catalyst system, thereby benefiting from a comparison to those previously unavailable findings, although the greater M-M bond energy, and tendency to agglomerate, of Ir versus Ni or Co are important differences to be noted. Overall, the main result of this work is that it provides the leading hypothesis going forward to try to refute in future work, namely, that sub, M(≥4) to larger, M(n) Ziegler nanoclusters are the dominant, industrial, Co- and Ni- plus AlR(3) catalysts in Ziegler-type hydrogenation systems.

摘要

齐格勒型氢化催化剂对于工业过程非常重要,特别是用于苯乙烯嵌段共聚物的大规模选择性氢化。齐格勒型氢化催化剂由第 8-10 族过渡金属前催化剂加烷基铝助催化剂组成(它们与齐格勒-纳塔聚合催化剂不同)。然而,大约 50 年来,两个困扰齐格勒型氢化催化的未解决问题是催化剂合成后存在的金属物种的性质,以及主要负责催化氢化活性的物种是均相的(例如,单核配合物)还是多相的(例如,定义为齐格勒型氢化催化剂前体组合而成的金属纳米团簇的齐格勒纳米团簇)。对现有文献的批判性回顾(Alley 等人,J. Mol. Catal. A: Chem. 2010, 315, 1-27)和最近使用 Ir 模型系统的研究(Alley 等人,Inorg. Chem. 2010, 49, 8131-8147)有助于指导目前对工业上青睐的 Co(辛酸酯)(2)或 Ni(2-乙基己酸酯)(2)加 AlEt(3)的齐格勒型氢化催化剂的研究。本研究采用的方法和方法与 Ir 模型系统的研究方法相似。具体来说,使用 Z 对比度扫描透射电子显微镜(STEM)、基质辅助激光解吸电离质谱(MALDI MS)和 X 射线吸收精细结构(XAFS)光谱学相结合,用于在氢化前后表征过渡金属物种。动力学研究包括汞(0)中毒实验,用于测试哪种物种是最活跃的催化剂。主要发现是,无论是在催化环己烯氢化之前还是之后,存在的物种包括从亚纳米到纳米尺度的金属团簇大小的广泛分布,Co 和 Ni 的估计平均团簇直径约为 1nm。XAFS 结果还暗示催化剂溶液是上述金属团簇与未还原的金属离子的混合物。基于动力学的汞(0)中毒证据表明,Co 和 Ni 齐格勒纳米团簇(即 M(≥4))是这些工业体系中最活跃的齐格勒型氢化催化剂。总的来说,本研究的新颖性和主要结论如下:(i)本研究考察了基于实际工业前体材料的 Co 和 Ni 基催化剂,这些催化剂在其表征方面存在问题;(ii)本文报道的 Z 对比度 STEM 结果代表了我们所知的对工业 Co 和 Ni 齐格勒型氢化催化剂的最佳微观分析;(iii)本研究是首次明确应用一种已建立的方法,使用多种分析方法和基于动力学的研究,在这些齐格勒型系统中区分均相和多相催化;(iv)本研究与成功研究 Ir 模型齐格勒催化剂系统平行,因此受益于与以前无法获得的发现进行比较,尽管 Ir 相对于 Ni 或 Co 的 M-M 键能更大且倾向于聚集是需要注意的重要差异。总的来说,这项工作的主要结果是,它提供了未来试图反驳的主要假设,即亚、M(≥4)至更大、M(n)齐格勒纳米团簇是主导的、工业的 Co 和 Ni 加 AlR(3)催化剂在齐格勒型氢化系统中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验