Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
Biochemistry. 2010 Aug 3;49(30):6329-40. doi: 10.1021/bi100339x.
Little is known about the molecular nature of residual structure in unfolded states of membrane proteins. A screen of chemical denaturants to maximally unfold the mammalian membrane protein and prototypic G protein coupled receptor rhodopsin, without interference from aggregation, described in an accompanying paper (DOI 10.1021/bi100338e ), identified sodium dodecyl sulfate (SDS), alone or in combination with other chemicals, as the most suitable denaturant. Here, we initiate the biophysical characterization of SDS-denatured states of rhodopsin. Using absorption, steady-state and time-resolved fluorescence spectroscopy, dynamic light scattering, and cysteine accessibility studies, tertiary structure of denatured states was characterized. In agreement with the pattern of secondary structure changes detected by circular dichroism described in the accompanying paper (DOI 10.1021/bi100338e ), tertiary structure changes are distinct over four SDS concentration ranges based on the expected predominant micellar structures. Dodecyl maltoside (DM)/SDS mixed micelle spheres (0.05-0.3% SDS) turn into SDS spheres (0.3-3% SDS) that gradually (3-15% SDS) become cylindrical (above 15% SDS). Denatured states in SDS spheres and cylinders show a relatively greater burial of cysteine and tryptophan residues and are more compact as compared to the states observed in mixed micellar structures. Protein structural changes at the membrane/water interface region are most prominent at very low SDS concentrations but reach transient stability in the compact conformations in SDS spheres. This is the first experimental evidence for the formation of a compact unfolding intermediate state with flexible surface elements in a membrane protein.
关于在膜蛋白去折叠状态下残留结构的分子性质,人们知之甚少。在一篇相关论文(DOI: 10.1021/bi100338e)中描述了一种筛选化学变性剂的方法,该方法可最大限度地使哺乳动物膜蛋白和原型 G 蛋白偶联受体视紫红质去折叠,且不会发生聚集,本文利用这种方法鉴定出十二烷基硫酸钠(SDS)是最适合的变性剂,SDS 可单独使用,也可与其他化学物质联合使用。在此,我们开始对 SDS 变性的视紫红质状态进行生物物理特性分析。我们利用吸收光谱、稳态和时间分辨荧光光谱、动态光散射和半胱氨酸可及性研究来对变性状态的三级结构进行了表征。与前文(DOI: 10.1021/bi100338e)中描述的圆二色性检测到的二级结构变化模式一致,三级结构变化在四个 SDS 浓度范围内是不同的,这四个范围基于预期的主要胶束结构。十二烷基麦芽糖苷(DM)/SDS 混合胶束球体(0.05-0.3% SDS)转变为 SDS 球体(0.3-3% SDS),然后逐渐(3-15% SDS)变成圆柱形(高于 15% SDS)。与在混合胶束结构中观察到的状态相比,SDS 球体和圆柱形中的变性状态显示出相对较大的半胱氨酸和色氨酸残基的埋藏,并且更为紧凑。在非常低的 SDS 浓度下,蛋白质在膜/水界面区域的结构变化最为明显,但在 SDS 球体的紧凑构象中达到瞬时稳定性。这是首次在膜蛋白中形成具有灵活表面元素的紧凑展开中间状态的实验证据。