Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.
Am J Physiol Gastrointest Liver Physiol. 2010 Sep;299(3):G723-32. doi: 10.1152/ajpgi.00494.2009. Epub 2010 Jun 24.
This study examined whether bacterial cell products that might gain access to the intestinal interstitium could activate mouse colonic nociceptive dorsal root ganglion (DRG) neurons using molecular and electrophysiological recording techniques. Colonic projecting neurons were identified by using the retrograde tracer fast blue and Toll-like receptor (TLR) 1, 2, 3, 4, 5, 6, 9, adapter proteins Md-1 and Md-2, and MYD88 mRNA expression was observed in laser-captured fast blue-labeled neurons. Ultrapure LPS 1 microg/ml phosphorylated p65 NF-kappaB subunits increased transcript for TNF-alpha and IL-1beta and stimulated secretion of TNF-alpha from acutely dissociated DRG neurons. In current-clamp recordings from colonic DRG neurons, chronic incubation (24 h) of ultrapure LPS significantly increased neuronal excitability. In acute studies, 3-min superfusion of standard-grade LPS (3-30 microg/ml) reduced the rheobase by up to 40% and doubled action potential discharge rate. The LPS effects were not significantly different in TLR4 knockout mice compared with wild-type mice. In contrast to standard-grade LPS, acute application of ultrapure LPS did not increase neuronal excitability in whole cell recordings or afferent nerve recordings from colonic mesenteric nerves. However, acute application of bacterial lysate (Escherichia coli NLM28) increased action potential discharge over 60% compared with control medium. Moreover, lysate also activated afferent discharge from colonic mesenteric nerves, and this was significantly increased in chronic dextran sulfate sodium salt mice. These data demonstrate that bacterial cell products can directly activate colonic DRG neurons leading to production of inflammatory cytokines by neurons and increased excitability. Standard-grade LPS may also have actions independent of TLR signaling.
本研究采用分子和电生理记录技术,探讨了细菌细胞产物是否能进入肠间质而激活小鼠结肠伤害性背根神经节(DRG)神经元。采用逆行示踪剂快蓝(Fast Blue)和 Toll 样受体(TLR)1、2、3、4、5、6、9、衔接蛋白 Md-1 和 Md-2 鉴定结肠投射神经元,并观察激光捕获快蓝标记神经元中 MYD88 mRNA 的表达。1 μg/ml 的超纯脂多糖(LPS)使 p65 NF-κB 亚单位磷酸化,增加 TNF-α和 IL-1β的转录,并刺激急性分离的 DRG 神经元分泌 TNF-α。在结肠 DRG 神经元的电流钳记录中,超纯 LPS 慢性孵育(24 h)显著增加神经元兴奋性。在急性研究中,标准级 LPS(3-30 μg/ml)3 分钟灌流可使 rheobase 降低多达 40%,并使动作电位放电率增加一倍。TLR4 敲除小鼠与野生型小鼠相比,LPS 的作用无显著差异。与标准级 LPS 不同,急性应用超纯 LPS 不会增加全细胞记录或结肠肠系膜神经传入神经记录中的神经元兴奋性。然而,急性应用细菌裂解物(大肠杆菌 NLM28)使动作电位放电增加超过 60%,与对照培养基相比。此外,裂解物还激活了结肠肠系膜神经的传入放电,在慢性葡聚糖硫酸钠盐小鼠中显著增加。这些数据表明,细菌细胞产物可直接激活结肠 DRG 神经元,导致神经元产生炎症细胞因子和增加兴奋性。标准级 LPS 也可能具有独立于 TLR 信号的作用。