Zeng Donglin, Lin D Y
Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599-7420, USA.
Stat Sin. 2010 Apr;20(2):871-910.
We establish a general asymptotic theory for nonparametric maximum likelihood estimation in semiparametric regression models with right censored data. We identify a set of regularity conditions under which the nonparametric maximum likelihood estimators are consistent, asymptotically normal, and asymptotically efficient with a covariance matrix that can be consistently estimated by the inverse information matrix or the profile likelihood method. The general theory allows one to obtain the desired asymptotic properties of the nonparametric maximum likelihood estimators for any specific problem by verifying a set of conditions rather than by proving technical results from first principles. We demonstrate the usefulness of this powerful theory through a variety of examples.
我们为具有右删失数据的半参数回归模型中的非参数极大似然估计建立了一个一般渐近理论。我们确定了一组正则性条件,在这些条件下,非参数极大似然估计量是一致的、渐近正态的,并且具有渐近有效性,其协方差矩阵可以通过逆信息矩阵或轮廓似然法一致地估计。该一般理论允许人们通过验证一组条件而不是从第一原理证明技术结果,来获得任何特定问题的非参数极大似然估计量的期望渐近性质。我们通过各种例子展示了这个强大理论的有用性。