Wong Kin Yau, Zeng Donglin, Lin D Y
Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599.
J Am Stat Assoc. 2018;113(522):893-905. doi: 10.1080/01621459.2017.1299626. Epub 2018 Jun 6.
Structural equation modeling is commonly used to capture complex structures of relationships among multiple variables, both latent and observed. We propose a general class of structural equation models with a semiparametric component for potentially censored survival times. We consider nonparametric maximum likelihood estimation and devise a combined Expectation-Maximization and Newton-Raphson algorithm for its implementation. We establish conditions for model identifiability and prove the consistency, asymptotic normality, and semiparametric efficiency of the estimators. Finally, we demonstrate the satisfactory performance of the proposed methods through simulation studies and provide an application to a motivating cancer study that contains a variety of genomic variables. Supplementary materials for this article are available online.
结构方程模型通常用于捕捉多个变量(包括潜在变量和观测变量)之间关系的复杂结构。我们提出了一类一般的结构方程模型,其具有用于潜在截尾生存时间的半参数分量。我们考虑非参数最大似然估计,并设计了一种结合期望最大化和牛顿 - 拉夫森算法来实现它。我们建立了模型可识别性的条件,并证明了估计量的一致性、渐近正态性和半参数效率。最后,我们通过模拟研究证明了所提出方法的良好性能,并提供了一个对包含各种基因组变量的激发性癌症研究的应用。本文的补充材料可在线获取。