Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
J Hered. 2011 Sep-Oct;102(5):499-511. doi: 10.1093/jhered/esq077. Epub 2010 Jun 25.
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.
在高度可变的栖息地中,适应生理挑战的进化解决方案可以跨越从全球性可塑性表型进化到局部适应表型进化的连续统。食蚊鱼(Fundulus sp.)在不同的选择环境中进化出了高度可塑性和局部适应性的表型,为探索生理可塑性和适应性变异的基因组基础提供了一个比较系统。重要的是,不同种群和物种对各种胁迫的耐受性存在广泛的差异,我们在比较研究中利用这种差异,深入了解进化表型变异的基因组基础。值得注意的是,食蚊鱼属的物种从淡水到海洋的渗透压栖息地连续统中都有分布,而 F. heteroclitus 种群在对污染的耐受性方面的变异幅度远远超过所有鱼类物种。在这里,我们探讨了转录组调控如何支撑渗透压冲击下的极端生理可塑性,以及基因组和转录组变异如何与局部进化的污染耐受性相关。我们发现,F. heteroclitus 通过快速的转录组响应迅速适应极端渗透压冲击,包括早期危机控制阶段和随后涉及许多调节途径的组织重塑阶段。我们还表明,局部适应污染耐受性的趋同进化涉及到复杂的基因表达和基因组序列变异模式,而对于某些基因,这种模式与体重依赖性有关。同样,利用与其他已建立和新兴模式生物相关的自然表型变异可能会大大加速发现表型变异的基因组基础的速度。