Suppr超能文献

锥虫的前体信使核糖核酸剪接机制:复杂还是简化?

The pre-mRNA splicing machinery of trypanosomes: complex or simplified?

作者信息

Günzl Arthur

机构信息

Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA.

出版信息

Eukaryot Cell. 2010 Aug;9(8):1159-70. doi: 10.1128/EC.00113-10. Epub 2010 Jun 25.

Abstract

Trypanosomatids are early-diverged, protistan parasites of which Trypanosoma brucei, Trypanosoma cruzi, and several species of Leishmania cause severe, often lethal diseases in humans. To better combat these parasites, their molecular biology has been a research focus for more than 3 decades, and the discovery of spliced leader (SL) trans splicing in T. brucei established a key difference between parasites and hosts. In SL trans splicing, the capped 5'-terminal region of the small nuclear SL RNA is fused onto the 5' end of each mRNA. This process, in conjunction with polyadenylation, generates individual mRNAs from polycistronic precursors and creates functional mRNA by providing the cap structure. The reaction is a two-step transesterification process analogous to intron removal by cis splicing which, in trypanosomatids, is confined to very few pre-mRNAs. Both types of pre-mRNA splicing are carried out by the spliceosome, consisting of five U-rich small nuclear RNAs (U snRNAs) and, in humans, up to approximately 170 different proteins. While trypanosomatids possess a full set of spliceosomal U snRNAs, only a few splicing factors were identified by standard genome annotation because trypanosomatid amino acid sequences are among the most divergent in the eukaryotic kingdom. This review focuses on recent progress made in the characterization of the splicing factor repertoire in T. brucei, achieved by tandem affinity purification of splicing complexes, by systematic analysis of proteins containing RNA recognition motifs, and by mining the genome database. In addition, recent findings about functional differences between trypanosome and human pre-mRNA splicing factors are discussed.

摘要

锥虫是早期分化的原生生物寄生虫,其中布氏锥虫、克氏锥虫和几种利什曼原虫会在人类中引发严重且往往致命的疾病。为了更好地对抗这些寄生虫,它们的分子生物学在过去30多年里一直是研究重点,布氏锥虫中剪接前导序列(SL)反式剪接的发现确立了寄生虫与宿主之间的一个关键差异。在SL反式剪接中,小核SL RNA的带帽5'末端区域与每个mRNA的5'末端融合。这个过程与聚腺苷酸化一起,从多顺反子前体产生单个mRNA,并通过提供帽结构来产生功能性mRNA。该反应是一个两步转酯过程,类似于顺式剪接去除内含子,而在锥虫中,顺式剪接仅限于极少数前体mRNA。这两种类型的前体mRNA剪接都是由剪接体进行的,剪接体由五种富含U的小核RNA(U snRNA)组成,在人类中,还包含多达约170种不同的蛋白质。虽然锥虫拥有全套的剪接体U snRNA,但通过标准基因组注释仅鉴定出少数剪接因子,因为锥虫的氨基酸序列在真核生物界中是差异最大的之一。本综述重点关注通过串联亲和纯化剪接复合物、系统分析含有RNA识别基序的蛋白质以及挖掘基因组数据库,在布氏锥虫剪接因子库特征研究方面取得的最新进展。此外,还讨论了关于锥虫和人类前体mRNA剪接因子功能差异的最新发现。

相似文献

1
The pre-mRNA splicing machinery of trypanosomes: complex or simplified?
Eukaryot Cell. 2010 Aug;9(8):1159-70. doi: 10.1128/EC.00113-10. Epub 2010 Jun 25.
2
Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors.
Eukaryot Cell. 2009 Jul;8(7):990-1000. doi: 10.1128/EC.00075-09. Epub 2009 May 8.
3
Analysis of spliceosomal proteins in Trypanosomatids reveals novel functions in mRNA processing.
J Biol Chem. 2010 Sep 3;285(36):27982-99. doi: 10.1074/jbc.M109.095349. Epub 2010 Jun 30.
5
mRNA splicing in trypanosomes.
Int J Med Microbiol. 2012 Oct;302(4-5):221-4. doi: 10.1016/j.ijmm.2012.07.004. Epub 2012 Sep 7.
7
The spliceosomal PRP19 complex of trypanosomes.
Mol Microbiol. 2015 Mar;95(5):885-901. doi: 10.1111/mmi.12910. Epub 2015 Jan 30.
8
Analysis of spliceosomal complexes in Trypanosoma brucei and silencing of two splicing factors Prp31 and Prp43.
Mol Biochem Parasitol. 2006 Jan;145(1):29-39. doi: 10.1016/j.molbiopara.2005.09.004. Epub 2005 Sep 27.
10
In vivo UV cross-linking of U snRNAs that participate in trypanosome trans-splicing.
Genes Dev. 1991 Oct;5(10):1859-69. doi: 10.1101/gad.5.10.1859.

引用本文的文献

1
NetStart 2.0: prediction of eukaryotic translation initiation sites using a protein language model.
BMC Bioinformatics. 2025 Aug 19;26(1):216. doi: 10.1186/s12859-025-06220-2.
3
An Overview of Biology Through the Lens of Proteomics: A Review.
Pathogens. 2025 Mar 31;14(4):337. doi: 10.3390/pathogens14040337.
4
: Genomic Diversity and Structure.
Pathogens. 2025 Jan 12;14(1):61. doi: 10.3390/pathogens14010061.
5
Revisiting the functional annotation of TriTryp using sequence similarity tools.
Heliyon. 2024 Oct 11;10(20):e39243. doi: 10.1016/j.heliyon.2024.e39243. eCollection 2024 Oct 30.
8
Unwrap RAP1's Mystery at Kinetoplastid Telomeres.
Biomolecules. 2024 Jan 4;14(1):67. doi: 10.3390/biom14010067.
9
Improving genome-wide mapping of nucleosomes in Trypanosome cruzi.
PLoS One. 2023 Nov 21;18(11):e0293809. doi: 10.1371/journal.pone.0293809. eCollection 2023.
10
Translational reprogramming as a driver of antimony-drug resistance in Leishmania.
Nat Commun. 2023 May 5;14(1):2605. doi: 10.1038/s41467-023-38221-1.

本文引用的文献

2
Establishment of an in vitro trans-splicing system in Trypanosoma brucei that requires endogenous spliced leader RNA.
Nucleic Acids Res. 2010 Jun;38(10):e114. doi: 10.1093/nar/gkq065. Epub 2010 Feb 16.
3
Expansion of the eukaryotic proteome by alternative splicing.
Nature. 2010 Jan 28;463(7280):457-63. doi: 10.1038/nature08909.
4
Essential role of a trypanosome U4-specific Sm core protein in small nuclear ribonucleoprotein assembly and splicing.
Eukaryot Cell. 2010 Mar;9(3):379-86. doi: 10.1128/EC.00353-09. Epub 2010 Jan 15.
5
Evidence for multiple independent origins of trans-splicing in Metazoa.
Mol Biol Evol. 2010 Mar;27(3):684-93. doi: 10.1093/molbev/msp286. Epub 2009 Nov 25.
6
The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome.
Mol Cell. 2009 Nov 25;36(4):593-608. doi: 10.1016/j.molcel.2009.09.040.
8
TriTrypDB: a functional genomic resource for the Trypanosomatidae.
Nucleic Acids Res. 2010 Jan;38(Database issue):D457-62. doi: 10.1093/nar/gkp851. Epub 2009 Oct 20.
9
A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300.
RNA. 2009 Dec;15(12):2174-85. doi: 10.1261/rna.1790509. Epub 2009 Sep 29.
10
Implications of chimaeric non-co-linear transcripts.
Nature. 2009 Sep 10;461(7261):206-11. doi: 10.1038/nature08452.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验