Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
Langmuir. 2010 Nov 2;26(21):16607-14. doi: 10.1021/la101752a.
To improve the activity of Au/TiO(2) catalysts toward hydrogenation without decreasing chemoselectivity, a number of isolated and supported Au, Pt, and Au-Pt nanoparticles have been investigated by means of density functional theory (DFT) calculations. H(2) dissociation on Pt and Au-Pt nanoparticles is considerably faster than that on Au, because H(2) adsorption on Pt atoms is dissociative and no activation barriers are involved. The high chemoselectivity of Au/TiO(2) catalysts does not exist in Pt/TiO(2) catalysts no matter how small the Pt particles are, but can be preserved in Au-Pt/TiO(2) catalysts if the Au/Pt ratio is high enough as to keep Pt atoms isolated and not at the active metal-support interface.
为了在不降低化学选择性的情况下提高 Au/TiO(2)催化剂的活性,采用密度泛函理论(DFT)计算研究了许多孤立和负载的 Au、Pt 和 Au-Pt 纳米颗粒。Pt 和 Au-Pt 纳米颗粒上的 H(2)解离速度明显快于 Au,因为 Pt 原子上的 H(2)吸附是解离的,并且不涉及任何活化能垒。Au/TiO(2)催化剂的高化学选择性在 Pt/TiO(2)催化剂中并不存在,无论 Pt 颗粒有多小,但是如果 Au/Pt 比值足够高以保持 Pt 原子孤立且不在活性金属-载体界面上,则可以在 Au-Pt/TiO(2)催化剂中保留。