Fetsch Christopher R, Deangelis Gregory C, Angelaki Dora E
Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., Box 8108, St. Louis, MO 63110, USA.
Eur J Neurosci. 2010 May;31(10):1721-9. doi: 10.1111/j.1460-9568.2010.07207.x.
The perception of self-motion is crucial for navigation, spatial orientation and motor control. In particular, estimation of one's direction of translation, or heading, relies heavily on multisensory integration in most natural situations. Visual and nonvisual (e.g., vestibular) information can be used to judge heading, but each modality alone is often insufficient for accurate performance. It is not surprising, then, that visual and vestibular signals converge frequently in the nervous system, and that these signals interact in powerful ways at the level of behavior and perception. Early behavioral studies of visual-vestibular interactions consisted mainly of descriptive accounts of perceptual illusions and qualitative estimation tasks, often with conflicting results. In contrast, cue integration research in other modalities has benefited from the application of rigorous psychophysical techniques, guided by normative models that rest on the foundation of ideal-observer analysis and Bayesian decision theory. Here we review recent experiments that have attempted to harness these so-called optimal cue integration models for the study of self-motion perception. Some of these studies used nonhuman primate subjects, enabling direct comparisons between behavioral performance and simultaneously recorded neuronal activity. The results indicate that humans and monkeys can integrate visual and vestibular heading cues in a manner consistent with optimal integration theory, and that single neurons in the dorsal medial superior temporal area show striking correlates of the behavioral effects. This line of research and other applications of normative cue combination models should continue to shed light on mechanisms of self-motion perception and the neuronal basis of multisensory integration.
自我运动感知对于导航、空间定向和运动控制至关重要。特别是,在大多数自然情况下,对自身平移方向或航向的估计严重依赖于多感官整合。视觉和非视觉(如前庭)信息可用于判断航向,但仅靠每种模态往往不足以实现准确的表现。因此,视觉和前庭信号在神经系统中频繁汇聚,且这些信号在行为和感知层面以强大的方式相互作用,这并不奇怪。早期关于视觉 - 前庭相互作用的行为研究主要包括对感知错觉的描述性说明和定性估计任务,结果往往相互矛盾。相比之下,其他模态的线索整合研究受益于严格心理物理学技术的应用,这些技术由基于理想观察者分析和贝叶斯决策理论的规范模型指导。在此,我们回顾最近试图利用这些所谓的最优线索整合模型来研究自我运动感知的实验。其中一些研究使用了非人类灵长类动物作为实验对象,从而能够直接比较行为表现和同时记录的神经元活动。结果表明,人类和猴子能够以与最优整合理论一致的方式整合视觉和前庭航向线索,并且背内侧颞上区的单个神经元表现出与行为效应的显著相关性。这一系列研究以及规范线索组合模型的其他应用应继续为自我运动感知机制和多感官整合的神经元基础提供启示。