Center for Infection and Immunity Mailman School of Public Health Columbia University New York, NY, USA.
BMC Bioinformatics. 2010 Jun 28;11:354. doi: 10.1186/1471-2105-11-354.
The analysis of oligonucleotide microarray data in pathogen surveillance and discovery is a challenging task. Target template concentration, nucleic acid integrity, and host nucleic acid composition can each have a profound effect on signal distribution. Exploratory analysis of fluorescent signal distribution in clinical samples has revealed deviations from normality, suggesting that distribution-free approaches should be applied.
Positive predictive value and false positive rates were examined to assess the utility of three well-established nonparametric methods for the analysis of viral array hybridization data: (1) Mann-Whitney U, (2) the Spearman correlation coefficient and (3) the chi-square test. Of the three tests, the chi-square proved most useful.
The acceptance of microarray use for routine clinical diagnostics will require that the technology be accompanied by simple yet reliable analytic methods. We report that our implementation of the chi-square test yielded a combination of low false positive rates and a high degree of predictive accuracy.
分析核酸检测阵列数据是一个具有挑战性的任务。目标模板浓度、核酸完整性和宿主核酸组成都可能对信号分布产生深远的影响。对临床样本中荧光信号分布的探索性分析显示出偏离正态分布的情况,这表明应该应用无分布的方法。
为了评估三种用于分析病毒阵列杂交数据的成熟的非参数方法的效用,我们检查了阳性预测值和假阳性率:(1)曼-惠特尼 U 检验,(2)斯皮尔曼相关系数和(3)卡方检验。在这三种检验方法中,卡方检验最为有用。
微阵列技术用于常规临床诊断的接受程度将要求该技术具有简单而可靠的分析方法。我们报告说,我们实施的卡方检验具有低假阳性率和高度预测准确性的组合。