Suppr超能文献

共病:网络视角。

Comorbidity: a network perspective.

机构信息

Department of Psychology, University of Amsterdam, 1018 WB Amsterdam, The Netherlands.

出版信息

Behav Brain Sci. 2010 Jun;33(2-3):137-50; discussion 150-93. doi: 10.1017/S0140525X09991567.

Abstract

The pivotal problem of comorbidity research lies in the psychometric foundation it rests on, that is, latent variable theory, in which a mental disorder is viewed as a latent variable that causes a constellation of symptoms. From this perspective, comorbidity is a (bi)directional relationship between multiple latent variables. We argue that such a latent variable perspective encounters serious problems in the study of comorbidity, and offer a radically different conceptualization in terms of a network approach, where comorbidity is hypothesized to arise from direct relations between symptoms of multiple disorders. We propose a method to visualize comorbidity networks and, based on an empirical network for major depression and generalized anxiety, we argue that this approach generates realistic hypotheses about pathways to comorbidity, overlapping symptoms, and diagnostic boundaries, that are not naturally accommodated by latent variable models: Some pathways to comorbidity through the symptom space are more likely than others; those pathways generally have the same direction (i.e., from symptoms of one disorder to symptoms of the other); overlapping symptoms play an important role in comorbidity; and boundaries between diagnostic categories are necessarily fuzzy.

摘要

共病研究的关键问题在于其所依据的心理计量学基础,即潜变量理论,其中精神障碍被视为导致一系列症状的潜在变量。从这个角度来看,共病是多个潜在变量之间的(双向)关系。我们认为,这种潜在变量的观点在共病研究中遇到了严重的问题,并提出了一种基于网络方法的截然不同的概念化,其中共病被假设是由多种障碍的症状之间的直接关系引起的。我们提出了一种可视化共病网络的方法,并基于主要抑郁症和广泛性焦虑症的实证网络,我们认为这种方法可以生成关于共病途径、重叠症状和诊断边界的现实假设,这些假设是潜变量模型无法自然容纳的:通过症状空间的某些共病途径比其他途径更有可能;这些途径通常具有相同的方向(即从一种障碍的症状到另一种障碍的症状);重叠症状在共病中起着重要作用;诊断类别之间的界限必然是模糊的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验