Suppr超能文献

空间标准化可提高 Affymetrix SNP 6.0 阵列的基因型调用质量。

Spatial normalization improves the quality of genotype calling for Affymetrix SNP 6.0 arrays.

机构信息

Mayo Clinic College of Medicine, Rochester, MN 55905, USA.

出版信息

BMC Bioinformatics. 2010 Jun 29;11:356. doi: 10.1186/1471-2105-11-356.

Abstract

BACKGROUND

Microarray measurements are susceptible to a variety of experimental artifacts, some of which give rise to systematic biases that are spatially dependent in a unique way on each chip. It is likely that such artifacts affect many SNP arrays, but the normalization methods used in currently available genotyping algorithms make no attempt at spatial bias correction. Here, we propose an effective single-chip spatial bias removal procedure for Affymetrix 6.0 SNP arrays or platforms with similar design features. This procedure deals with both extreme and subtle biases and is intended to be applied before standard genotype calling algorithms.

RESULTS

Application of the spatial bias adjustments on HapMap samples resulted in higher genotype call rates with equal or even better accuracy for thousands of SNPs. Consequently the normalization procedure is expected to lead to more meaningful biological inferences and could be valuable for genome-wide SNP analysis.

CONCLUSIONS

Spatial normalization can potentially rescue thousands of SNPs in a genetic study at the small cost of computational time. The approach is implemented in R and available from the authors upon request.

摘要

背景

微阵列测量易受多种实验因素的影响,其中一些因素会导致系统偏差,这些偏差在每个芯片上以独特的方式呈现空间依赖性。很可能这种伪影会影响许多 SNP 阵列,但目前可用的基因分型算法中使用的归一化方法并没有尝试进行空间偏差校正。在这里,我们提出了一种有效的单芯片空间偏差去除程序,适用于 Affymetrix 6.0 SNP 阵列或具有类似设计特征的平台。该程序处理极端和微妙的偏差,旨在应用于标准基因型调用算法之前。

结果

在 HapMap 样本上应用空间偏差调整后,数千个 SNP 的基因型呼叫率更高,准确性相等甚至更好。因此,该归一化过程有望产生更有意义的生物学推论,并且对于全基因组 SNP 分析可能很有价值。

结论

空间归一化有可能以较小的计算时间代价在遗传研究中挽救数千个 SNP。该方法在 R 中实现,并可根据要求向作者索取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dcf/2910027/3425ef5e5f14/1471-2105-11-356-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验