School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
Chaos. 2010 Jun;20(2):023112. doi: 10.1063/1.3429598.
Anticipating chaotic synchronization based parameter estimation of chaotic system is investigated. We propose a method to estimate the unknown parameters of the interested chaotic system even if only a scalar time series is available. Although the Krasovskii-Lyapunov functional method often results in delay-independent stability condition, stability of the synchronization manifold usually relates to time delay. We analyze the stability of anticipating synchronization based parameter estimation numerically. Series of driven systems are used to increase the anticipation time, however, result in longer time to estimate the unknown parameters. These results are also confirmed by numerical simulations.
研究了基于预期混沌同步的混沌系统参数估计。我们提出了一种方法,即使只有一个标量时间序列可用,也可以估计感兴趣的混沌系统的未知参数。尽管 Krasovskii-Lyapunov 泛函方法通常导致与延迟无关的稳定性条件,但同步流形的稳定性通常与延迟有关。我们通过数值方法分析了基于预期同步的参数估计的稳定性。使用一系列驱动系统来增加预期时间,但会导致更长的时间来估计未知参数。这些结果也通过数值模拟得到了证实。