Suppr超能文献

生物活性陶瓷增强复合材料在骨增量中的应用。

Bioactive ceramic-reinforced composites for bone augmentation.

机构信息

School of Engineering, University of Glasgow, Glasgow, UK.

出版信息

J R Soc Interface. 2010 Oct 6;7 Suppl 5(Suppl 5):S541-57. doi: 10.1098/rsif.2010.0229.focus. Epub 2010 Jun 30.

Abstract

Biomaterials have been used to repair the human body for millennia, but it is only since the 1970s that man-made composites have been used. Hydroxyapatite (HA)-reinforced polyethylene (PE) is the first of the 'second-generation' biomaterials that have been developed to be bioactive rather than bioinert. The mechanical properties have been characterized using quasi-static, fatigue, creep and fracture toughness testing, and these studies have allowed optimization of the production method. The in vitro and in vivo biological properties have been investigated with a range of filler content and have shown that the presence of sufficient bioactive filler leads to a bioactive composite. Finally, the material has been applied clinically, initially in the orbital floor and later in the middle ear. From this initial combination of HA in PE other bioactive ceramic polymer composites have been developed.

摘要

生物材料已经被用于修复人体长达数千年,但直到 20 世纪 70 年代才开始使用人造复合材料。羟基磷灰石(HA)增强聚乙烯(PE)是第一代“第二代”生物材料之一,它被开发为具有生物活性而不是生物惰性。通过准静态、疲劳、蠕变和断裂韧性测试对其力学性能进行了表征,这些研究允许对生产方法进行优化。通过一系列填充剂含量的体外和体内生物学特性研究表明,存在足够的生物活性填充剂会导致生物活性复合材料的产生。最后,该材料已在临床上应用,最初用于眼眶底部,后来用于中耳。从最初的 HA/PE 组合开始,已经开发出了其他具有生物活性的陶瓷聚合物复合材料。

相似文献

1
Bioactive ceramic-reinforced composites for bone augmentation.
J R Soc Interface. 2010 Oct 6;7 Suppl 5(Suppl 5):S541-57. doi: 10.1098/rsif.2010.0229.focus. Epub 2010 Jun 30.
2
A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic.
Mater Sci Eng C Mater Biol Appl. 2019 May;98:1087-1096. doi: 10.1016/j.msec.2018.12.140. Epub 2019 Jan 9.
3
Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size.
Biomaterials. 2004 Mar;25(6):949-55. doi: 10.1016/j.biomaterials.2003.07.005.
4
Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges.
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109895. doi: 10.1016/j.msec.2019.109895. Epub 2019 Jun 16.
5
Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.
J Mech Behav Biomed Mater. 2015 Aug;48:1-11. doi: 10.1016/j.jmbbm.2015.04.002. Epub 2015 Apr 8.
6
Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications.
J Biomed Mater Res A. 2016 Apr;104(4):1030-56. doi: 10.1002/jbm.a.35619. Epub 2015 Dec 23.
8
Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen.
J Biomed Mater Res A. 2005 Jun 15;73(4):409-21. doi: 10.1002/jbm.a.30279.
9
Mechanical properties and in vivo study of modified-hydroxyapatite/polyetheretherketone biocomposites.
Mater Sci Eng C Mater Biol Appl. 2017 Apr 1;73:429-439. doi: 10.1016/j.msec.2016.12.076. Epub 2016 Dec 19.
10
Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments.
J Mech Behav Biomed Mater. 2013 Jan;17:1-10. doi: 10.1016/j.jmbbm.2012.07.013. Epub 2012 Oct 17.

引用本文的文献

1
Porous hydroxyapatite - β-tricalcium phosphate ceramics produced from a rapid sol-gel process.
Sci Rep. 2025 May 12;15(1):16422. doi: 10.1038/s41598-025-01253-2.
2
Polyetheretherketone and Its Composites for Bone Replacement and Regeneration.
Polymers (Basel). 2020 Nov 29;12(12):2858. doi: 10.3390/polym12122858.
3
Biomimetics of Bone Implants: The Regenerative Road.
Biores Open Access. 2017 Jan 1;6(1):1-6. doi: 10.1089/biores.2016.0044. eCollection 2017.
5
Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering.
Front Bioeng Biotechnol. 2015 Dec 17;3:202. doi: 10.3389/fbioe.2015.00202. eCollection 2015.
6
Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications.
J Funct Biomater. 2015 Aug 7;6(3):708-832. doi: 10.3390/jfb6030708.
9
Scaling the heights--challenges in medical materials.
J R Soc Interface. 2010 Oct 6;7 Suppl 5(Suppl 5):S501-2. doi: 10.1098/rsif.2010.0363.focus. Epub 2010 Jul 28.

本文引用的文献

2
Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces.
Mater Sci Eng A Struct Mater. 2007 Apr;27(3):450-468. doi: 10.1016/j.msec.2006.05.055.
3
Fabrication of porous bioactive structures using the selective laser sintering technique.
Proc Inst Mech Eng H. 2007 Nov;221(8):873-86. doi: 10.1243/09544119JEIM232.
5
Effect of filler surface morphology on the impact behaviour of hydroxyapatite reinforced high density polyethylene composites.
J Mater Sci Mater Med. 2008 Feb;19(2):761-6. doi: 10.1007/s10856-007-3119-1. Epub 2007 Jul 10.
6
In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite.
J Biomed Mater Res A. 2007 May;81(2):409-17. doi: 10.1002/jbm.a.31078.
9
The mechanical consequences of variation in the mineral content of bone.
J Biomech. 1969 Mar;2(1):1-11. doi: 10.1016/0021-9290(69)90036-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验