QED Medical Physics, Inc.
J Appl Clin Med Phys. 2010 Apr 17;11(2):3130. doi: 10.1120/jacmp.v11i2.3130.
Four 16 cm diameter spherical phantoms were modeled in this study: a homogenous water phantom, and three water phantoms with 1 cm thick shell each made of different materials (PMMA, Plastic WaterTM and polystyrene). The PENELOPE Monte Carlo code was utilized to simulate photon beams from the Leksell Gamma Knife (LGK) unit and to determine absorbed dose to water (Dw) from a single 18 mm beam delivered to each phantom. A score spherical volume of 0.007 cm3 was used to simulate the dimensions of the sensitive volume of the Exradin A-16 ionization chamber, in the center of the phantom. In conclusion, the PMMA shell filled with water required a small correction for the determination of the absorbed dose, while remaining within the statistical uncertainty of the calculations (+/- 0.71). Plastic WaterTM and polystyrene shells can be used without correction. There is a potential advantage to measuring the 4 mm helmet output using these spherical water phantoms.
本研究中构建了四个 16cm 直径的球形水模:一个均匀水模,以及三个各厚 1cm 的水模,外壳由三种不同材料(PMMA、Plastic WaterTM 和聚苯乙烯)制成。采用 PENELOPE 蒙特卡罗代码模拟了来自 Leksell Gamma Knife(LGK)装置的光子束,并确定了每个水模中单个 18mm 射束的吸收剂量(Dw)。使用一个 0.007cm3 的评分球体积来模拟位于水模中心的 Exradin A-16 电离室灵敏体积的尺寸。总之,填充水的 PMMA 外壳在确定吸收剂量时需要进行微小修正,但仍在计算的统计不确定性范围内(+/-0.71)。Plastic WaterTM 和聚苯乙烯外壳可无需修正。使用这些球形水模测量 4mm 头盔输出可能具有潜在优势。