Suppr超能文献

离子液体和熔融盐中分数斯托克斯-爱因斯坦和能斯特-爱因斯坦方程与速度相关系数之间的关系。

Relations between the fractional Stokes-Einstein and Nernst-Einstein equations and velocity correlation coefficients in ionic liquids and molten salts.

机构信息

School of Physical, Environmental and Mathematical Sciences, University College, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia.

出版信息

J Phys Chem B. 2010 Jul 29;114(29):9572-7. doi: 10.1021/jp102687r.

Abstract

It is often asserted that deviation from the Nernst-Einstein relation (NE) between the molar conductivity (Lambda) and ion self-diffusion coefficients (D(i)) in ionic liquids (ILs) and molten salts is evidence for ion pairing. The NE was originally derived for noninteracting ions, as in an infinitely dilute electrolyte solution. In reality, mass, charge, momentum, and energy transport processes in ILs and molten salts involve correlated interionic collisions, caging, and vortex motions, as in any other dense liquid. Phenomenological theory using nonequilibrium thermodynamics and literature molecular dynamics simulations shows that deviations from the simple NE expression occur due to differences in cross-correlations of ionic velocities. ILs have also been shown, like molecular liquids generally, and model fluids such as the Lennard-Jones, to fit the fractional form of the Stokes-Einstein relation, D(i)/T proportional to (1/eta)(t) and Lambda proportional to (1/eta)(t), where eta is the shear viscosity. Here, it is shown that when this is the case, the NE deviation parameter Delta is then a constant, independent of temperature and pressure (consistent with experiment) and the value of the parameter t; it is a function of the ionic charges and volumes, but not the masses. Therefore, Delta is not a measure of "ionicity": it is necessary to seek other independent evidence to determine whether ion pairing is present in a given ionic liquid or molten salt. The use of "apparent" transport numbers derived from self-diffusion coefficients to describe charge transport in pure salts is argued to be unnecessary.

摘要

人们常断言,离子液体(ILs)和熔融盐中摩尔电导率(Lambda)和离子自扩散系数(D(i))之间偏离 Nernst-Einstein 关系(NE)是离子对形成的证据。NE 最初是针对非相互作用离子推导出来的,就像在无限稀释的电解质溶液中一样。实际上,在 ILs 和熔融盐中,质量、电荷、动量和能量传输过程涉及到相关的离子碰撞、笼化和涡旋运动,就像在任何其他致密液体中一样。使用非平衡热力学的唯象理论和文献中的分子动力学模拟表明,偏离简单的 NE 表达式是由于离子速度的交叉相关差异引起的。ILs 像一般的分子液体一样,以及像 Lennard-Jones 这样的模型流体,都被证明符合 Stokes-Einstein 关系的分数形式,D(i)/T 与 (1/eta)(t)成正比,Lambda 与 (1/eta)(t)成正比,其中 eta 是剪切黏度。这里表明,当这种情况发生时,NE 偏离参数 Delta 是一个常数,与温度和压力无关(与实验一致),也与参数 t 无关;它是离子电荷和体积的函数,但与质量无关。因此,Delta 不是“离子性”的度量:有必要寻找其他独立的证据来确定给定的离子液体或熔融盐中是否存在离子对。使用自扩散系数得出的“表观”迁移数来描述纯盐中的电荷传输是不必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验