Suppr超能文献

聚合物电解质中的离子传输:搭建实验与分子模拟之间的新桥梁

Ion Transport in Polymer Electrolytes: Building New Bridges between Experiment and Molecular Simulation.

作者信息

Shao Yunqi, Gudla Harish, Mindemark Jonas, Brandell Daniel, Zhang Chao

机构信息

Department of Chemistry─Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 751 21 Uppsala, Sweden.

出版信息

Acc Chem Res. 2024 Apr 16;57(8):1123-1134. doi: 10.1021/acs.accounts.3c00791. Epub 2024 Apr 3.

Abstract

ConspectusPolymer electrolytes constitute a promising type of material for solid-state batteries. However, one of the bottlenecks for their practical implementation lies in the transport properties, often including restricted Li self-diffusion and conductivity and low cationic transference numbers. This calls for a molecular understanding of ion transport in polymer electrolytes in which molecular dynamics (MD) simulation can provide both new physical insights and quantitative predictions. Although efforts have been made in this area and qualitative pictures have emerged, direct and quantitative comparisons between experiment and simulation remain challenging because of the lack of a unified theoretical framework to connect them.In our work, we show that by computing the glass transition temperature () of the model system and using the normalized inverse temperature 1000/( - + 50), the Li self-diffusion coefficient can be compared quantitatively between MD simulations and experiments. This allows us to disentangle the effects of and the polymer dielectric environment on ion conduction in polymer electrolytes, giving rise to the identification of an optimal solvating environment for fast ion conduction.Unlike Li self-diffusion coefficients and ionic conductivity, the transference number, which describes the fraction of current carried by Li ions, depends on the boundary conditions or the reference frame (RF). This creates a non-negligible gap when comparing experiment and simulation because the fluxes in the experimental measurements and in the linear response theory used in MD simulation are defined in different RFs. We show that by employing the Onsager theory of ion transport and applying a proper RF transformation, a much better agreement between experiment and simulation can be achieved for the PEO-LiTFSI system. This further allows us to derive the theoretical expression for the Bruce-Vincent transference number in terms of the Onsager coefficients and make a direct comparison to experiments. Since the Bruce-Vincent method is widely used to extract transference numbers from experimental data, this opens the door to calibrating MD simulations via reproducing the Bruce-Vincent transference number and using MD simulations to predict the true transference number.In addition, we also address several open questions here such as the time-scale effects on the ion-pairing phenomenon, the consistency check between different types of experiments, the need for more accurate force fields used in MD simulations, and the extension to multicomponent systems. Overall, this Account focuses on building new bridges between experiment and simulation for quantitative comparison, warnings of pitfalls when comparing apples and oranges, and clarifying misconceptions. From a physical chemistry point of view, it connects to concentrated solution theory and provides a unified theoretical framework that can maximize the power of MD simulations. Therefore, this Account will be useful for the electrochemical energy storage community at large and set examples of how to approach experiments from theory and simulation (and vice versa).

摘要

综述

聚合物电解质是固态电池中一类很有前景的材料。然而,其实际应用的瓶颈之一在于传输特性,通常包括受限的锂自扩散、电导率以及较低的阳离子迁移数。这就需要从分子层面理解聚合物电解质中的离子传输,而分子动力学(MD)模拟能够提供新的物理见解和定量预测。尽管在这一领域已经做出了努力并且出现了一些定性的描述,但由于缺乏将实验与模拟联系起来的统一理论框架,实验与模拟之间的直接定量比较仍然具有挑战性。

在我们的工作中,我们表明通过计算模型体系的玻璃化转变温度( )并使用归一化的逆温度1000/( - + 50),可以在MD模拟和实验之间对锂自扩散系数进行定量比较。这使我们能够区分 和聚合物介电环境对聚合物电解质中离子传导的影响,从而确定有利于快速离子传导的最佳溶剂化环境。

与锂自扩散系数和离子电导率不同,描述锂离子所携带电流分数的迁移数取决于边界条件或参考系(RF)。这在比较实验和模拟时会产生不可忽视的差距,因为实验测量中的通量和MD模拟中使用的线性响应理论中的通量是在不同的参考系中定义的。我们表明,通过采用昂萨格离子传输理论并应用适当的参考系变换,对于PEO-LiTFSI体系,实验与模拟之间可以达成更好的一致性。这进一步使我们能够根据昂萨格系数推导出布鲁斯 - 文森特迁移数的理论表达式,并与实验进行直接比较。由于布鲁斯 - 文森特方法被广泛用于从实验数据中提取迁移数,这为通过重现布鲁斯 - 文森特迁移数来校准MD模拟以及使用MD模拟预测真实迁移数打开了大门。

此外,我们在这里还解决了几个开放性问题,例如时间尺度对离子配对现象的影响、不同类型实验之间的一致性检查、MD模拟中使用更精确力场的必要性以及向多组分体系的扩展。总体而言,本综述重点在于搭建实验与模拟之间用于定量比较的新桥梁,警示在进行不恰当比较时的陷阱,并澄清误解。从物理化学的角度来看,它与浓溶液理论相联系,并提供了一个统一的理论框架,能够最大限度地发挥MD模拟的作用。因此,本综述将对整个电化学储能领域有用,并为如何从理论和模拟(反之亦然)来开展实验提供示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f3/11025026/5b5a51696e93/ar3c00791_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验