Suppr超能文献

羟丙基-β-环糊精包合可溶性二茂铁与金纳米复合材料修饰玻碳电极协同作用测定生物体系中的 NO。

Synergistic effect of hydroxypropyl-beta-cyclodextrin encapsulated soluble ferrocene and the gold nanocomposite modified glassy carbon electrode for the estimation of NO in biological systems.

机构信息

Central Electrochemical Research Institute (CECRI)-Council of Scientific and Industrial Research (CSIR), Karaikudi-630006, Tamil Nadu, India.

出版信息

Analyst. 2010 Sep;135(9):2348-54. doi: 10.1039/c0an00091d. Epub 2010 Jul 2.

Abstract

An electrochemical assay for sensing NO in biological systems is described in this paper. The ferrocene mediated reduction of NO, facilitated by the gold nanocomposite modified glassy carbon electrode is followed by an amperometric procedure. The analytical protocol involves the modification of a glassy carbon electrode by an overlayer of Au nanocomposites prepared through galvanic reduction. Additional overlayers can be built on the surface by repetition of the procedure. The modification leads to the decrease of the over-potential required for the analysis and results in a non-biofouling surface. Since the procedure is based on the electrochemical reduction of NO, the potential interferences from species like dopamine, ascorbic acid, etc., are overcome. The sensitivity, detection limit and response time achieved through this protocol for the modified electrode containing three Au overlayers are 0.03 nA/nM, 25.75 nM and <5 s. Analysis of NO has been carried out in real samples like liver extract, peripheral blood mononuclear cells (PBMCs) and miconazole nitrate ointment and the values obtained are comparable with that obtained by Griess analysis.

摘要

本文描述了一种用于生物体系中检测 NO 的电化学分析方法。该方法利用金纳米复合材料修饰玻碳电极促进了亚铁氰化物介导的 NO 还原,随后进行电流测定。分析方案包括通过电还原制备 Au 纳米复合材料的覆盖层来修饰玻碳电极。通过重复该程序可以在表面上构建附加的覆盖层。修饰导致分析所需的过电位降低,并产生非生物污染的表面。由于该程序基于 NO 的电化学还原,因此克服了多巴胺、抗坏血酸等物质的电位干扰。通过该协议,含有三层 Au 覆盖层的修饰电极的灵敏度、检测限和响应时间分别为 0.03 nA/nM、25.75 nM 和 <5 s。已经在真实样品(如肝提取物、外周血单核细胞(PBMCs)和硝酸咪康唑软膏)中进行了 NO 的分析,所得到的值与格里斯分析得到的值相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验