Suppr超能文献

肌肉骨骼系统的多效性遗传学如何为衰老的基因组学和表型组学提供信息。

How pleiotropic genetics of the musculoskeletal system can inform genomics and phenomics of aging.

作者信息

Karasik David

机构信息

Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, 1200 Centre Street, Boston, MA 02131, USA.

出版信息

Age (Dordr). 2011 Mar;33(1):49-62. doi: 10.1007/s11357-010-9159-3. Epub 2010 Jul 2.

Abstract

Genetic study can provide insight into the biologic mechanisms underlying inter-individual differences in susceptibility to (or resistance to) organisms' aging. Recent advances in molecular genetics and genetic epidemiology provide the necessary tools to perform a study of the genetic sources of biological aging. However, to be successful, the genetic study of a complex condition requires a heritable phenotype to be developed and validated. Genome-wide association studies offer an unbiased approach to identify new candidate genes for human diseases. It is hypothesized that convergent results from multiple aging-related traits will point out the genes responsible for the general aging of the organism. This perspective focuses on the musculoskeletal aging as an example of an approach to identify a downstream common pathway that summarizes aging processes. Since the musculoskeletal traits are linked to the state of many vital functions, disability, and ultimately survival rates, we postulate that there is significance in studying musculoskeletal aging. Construction of an integrated phenotype of aging can be achieved based on shared genetics among multiple musculoskeletal biomarkers. Valid biomarkers from other systems of the organism should be similarly explored. The new composite aging score needs to be validated by determining whether it predicts all-cause mortality, incidences of major chronic diseases, and disability late in life. Comprehensive databases on biomarkers of musculoskeletal aging in multiple large cohort studies, along with information on various health outcomes, are needed to validate the proposed measure of biological aging.

摘要

基因研究能够深入了解个体对生物体衰老的易感性(或抗性)差异背后的生物学机制。分子遗传学和遗传流行病学的最新进展提供了开展生物衰老基因源研究的必要工具。然而,要取得成功,对复杂病症的基因研究需要开发并验证一种可遗传的表型。全基因组关联研究为识别人类疾病的新候选基因提供了一种无偏倚的方法。据推测,多个与衰老相关性状的趋同结果将指出负责生物体整体衰老的基因。本观点以肌肉骨骼衰老为例,重点介绍一种识别概括衰老过程的下游共同途径的方法。由于肌肉骨骼性状与许多重要功能的状态、残疾以及最终的生存率相关联,我们推测研究肌肉骨骼衰老具有重要意义。基于多个肌肉骨骼生物标志物之间共享的遗传学,可以构建衰老的综合表型。生物体其他系统的有效生物标志物也应进行类似的探索。新的综合衰老评分需要通过确定它是否能预测全因死亡率、主要慢性疾病的发病率以及晚年残疾来进行验证。需要多个大型队列研究中关于肌肉骨骼衰老生物标志物的综合数据库,以及各种健康结局的信息,来验证所提出的生物衰老测量方法。

相似文献

1
How pleiotropic genetics of the musculoskeletal system can inform genomics and phenomics of aging.
Age (Dordr). 2011 Mar;33(1):49-62. doi: 10.1007/s11357-010-9159-3. Epub 2010 Jul 2.
2
Models to explore genetics of human aging.
Adv Exp Med Biol. 2015;847:141-61. doi: 10.1007/978-1-4939-2404-2_7.
3
The genetic pleiotropy of musculoskeletal aging.
Front Physiol. 2012 Aug 8;3:303. doi: 10.3389/fphys.2012.00303. eCollection 2012.
4
Genetic Pleiotropy of Bone-Related Phenotypes: Insights from Osteoporosis.
Curr Osteoporos Rep. 2020 Oct;18(5):606-619. doi: 10.1007/s11914-020-00618-y.
5
Genetics of Bone and Muscle Interactions in Humans.
Curr Osteoporos Rep. 2019 Apr;17(2):86-95. doi: 10.1007/s11914-019-00505-1.
6
PRIMe: a method for characterization and evaluation of pleiotropic regions from multiple genome-wide association studies.
Bioinformatics. 2011 May 1;27(9):1201-6. doi: 10.1093/bioinformatics/btr116. Epub 2011 Mar 12.
8
Mood, stress and longevity: convergence on ANK3.
Mol Psychiatry. 2016 Aug;21(8):1037-49. doi: 10.1038/mp.2016.65. Epub 2016 May 24.
9
Determining Which Phenotypes Underlie a Pleiotropic Signal.
Genet Epidemiol. 2016 Jul;40(5):366-81. doi: 10.1002/gepi.21973. Epub 2016 May 30.
10
Evidence for pleiotropic factors in genetics of the musculoskeletal system.
Bone. 2010 May;46(5):1226-37. doi: 10.1016/j.bone.2010.01.382. Epub 2010 Feb 10.

引用本文的文献

3
Bone Control of Muscle Function.
Int J Mol Sci. 2020 Feb 11;21(4):1178. doi: 10.3390/ijms21041178.
4
Poor sleep quality and later sleep timing are risk factors for osteopenia and sarcopenia in middle-aged men and women: The NEO study.
PLoS One. 2017 May 1;12(5):e0176685. doi: 10.1371/journal.pone.0176685. eCollection 2017.
5
Association of Serum Klotho with Loss of Bone Mineral Density and Fracture Risk in Older Adults.
J Am Geriatr Soc. 2016 Dec;64(12):e304-e308. doi: 10.1111/jgs.14661. Epub 2016 Dec 2.
7
The genetics of bone mass and susceptibility to bone diseases.
Nat Rev Rheumatol. 2016 Jun;12(6):323-34. doi: 10.1038/nrrheum.2016.48. Epub 2016 Apr 7.
8
Interaction between bone and muscle in older persons with mobility limitations.
Curr Pharm Des. 2014;20(19):3178-97. doi: 10.2174/13816128113196660690.
9
Androgen receptor polyglutamine repeat number: models of selection and disease susceptibility.
Evol Appl. 2013 Feb;6(2):180-96. doi: 10.1111/j.1752-4571.2012.00275.x. Epub 2012 Jun 11.
10
The genetic pleiotropy of musculoskeletal aging.
Front Physiol. 2012 Aug 8;3:303. doi: 10.3389/fphys.2012.00303. eCollection 2012.

本文引用的文献

1
The Use of the Hamilton Rating Scale for Depression in Elderly Patients With Cognitive Impairment and Physical Illness.
Am J Geriatr Psychiatry. 1994;2(3):220-229. doi: 10.1097/00019442-199400230-00006. Epub 2013 Jan 28.
3
Genome-wide pleiotropy of osteoporosis-related phenotypes: the Framingham Study.
J Bone Miner Res. 2010 Jul;25(7):1555-63. doi: 10.1002/jbmr.38.
5
RNA editing genes associated with extreme old age in humans and with lifespan in C. elegans.
PLoS One. 2009 Dec 14;4(12):e8210. doi: 10.1371/journal.pone.0008210.
7
Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture.
Ann Intern Med. 2009 Oct 20;151(8):528-37. doi: 10.7326/0003-4819-151-8-200910200-00006.
8
Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies.
Nat Genet. 2009 Nov;41(11):1199-206. doi: 10.1038/ng.446. Epub 2009 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验