Suppr超能文献

驱动玻璃态材料中的可塑性与动力学非均匀性。

Plasticity and dynamical heterogeneity in driven glassy materials.

作者信息

Tsamados M

机构信息

Laboratoire de Physique de la Matière Condensée et Nanostructures, CNRS, Université de Lyon, Université Lyon I, Villeurbanne, France.

出版信息

Eur Phys J E Soft Matter. 2010 Jun;32(2):165-81. doi: 10.1140/epje/i2010-10609-0. Epub 2010 Jul 2.

Abstract

Many amorphous glassy materials exhibit complex spatio-temporal mechanical response and rheology, characterized by an intermittent stress strain response and a fluctuating velocity profile. Under quasistatic and athermal deformation protocols this heterogeneous plastic flow was shown to be composed of plastic events of various sizes, ranging from local quadrupolar plastic rearrangements to system spanning shear bands. In this paper, through numerical study of a 2D Lennard-Jones amorphous solid, we generalize the study of the heterogeneous dynamics of glassy materials to the finite shear rate (gamma not equal to 0) and temperature case (T not equal to 0). In practice, we choose an effectively athermal limit (T approximately 0) and focus on the influence of shear rate on the rheology of the glass. In line with previous works we find that the model Lennard-Jones glass follows the rheological behavior of a yield stress fluid with a Herschel-Bulkley response of the form, sigma = sigmaY + c1gamma(beta). The global mechanical response obtained through the use of Molecular Dynamics is shown to converge in the limit gamma --> 0 to the quasistatic limit obtained with an energy minimization protocol. The detailed analysis of the plastic deformation at different shear rates shows that the glass follows different flow regimes. At sufficiently low shear rates the mechanical response reaches a shear-rate-independent regime that exhibits all the characteristics of the quasistatic response (finite-size effects, cascades of plastic rearrangements, yield stress, ...). At intermediate shear rates the rheological properties are determined by the externally applied shear rate and the response deviates from the quasistatic limit. Finally at higher shear the system reaches a shear-rate-independent homogeneous regime. The existence of these three regimes is also confirmed by the detailed analysis of the atomic motion. The computation of the four-point correlation function shows that the transition from the shear-rate-dominated to the quasistatic regime is accompanied by the growth of a dynamical cooperativity length scale xi that is shown to diverge with shear rate as xi is proportional to gamma(-nu), with nu approximately 0.2 -0.3. This scaling is compared with the prediction of a simple model that assumes the diffusive propagation of plastic events.

摘要

许多非晶态玻璃材料表现出复杂的时空力学响应和流变学特性,其特征在于间歇性的应力应变响应和波动的速度分布。在准静态和无热变形条件下,这种非均匀塑性流动被证明是由各种大小的塑性事件组成的,范围从局部四极塑性重排到贯穿系统的剪切带。在本文中,通过对二维 Lennard-Jones 非晶固体的数值研究,我们将玻璃材料非均匀动力学的研究推广到有限剪切速率(γ≠0)和温度情况(T≠0)。实际上,我们选择一个有效的无热极限(T≈0),并专注于剪切速率对玻璃流变学的影响。与之前的工作一致,我们发现模型 Lennard-Jones 玻璃遵循屈服应力流体的流变行为,具有 Herschel-Bulkley 响应形式,即σ = σY + c1γ(β)。通过分子动力学获得的全局力学响应在γ→0 的极限下收敛到通过能量最小化协议获得的准静态极限。对不同剪切速率下塑性变形的详细分析表明,玻璃遵循不同的流动状态。在足够低的剪切速率下,力学响应达到一个与剪切速率无关的状态,该状态表现出准静态响应的所有特征(有限尺寸效应、塑性重排级联、屈服应力等)。在中等剪切速率下,流变特性由外部施加的剪切速率决定,响应偏离准静态极限。最后,在更高的剪切速率下,系统达到一个与剪切速率无关的均匀状态。对原子运动的详细分析也证实了这三种状态的存在。四点关联函数的计算表明,从剪切速率主导状态到准静态状态的转变伴随着动态协同长度尺度ξ的增长,该尺度随剪切速率发散,即ξ与γ(-ν)成正比,ν约为 0.2 - 0.3。将这种标度与假设塑性事件扩散传播的简单模型的预测进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验