Suppr超能文献

参考脑电图(rEEG)在协助选择治疗抑郁症药物中的应用。

The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression.

机构信息

Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, 401 Quarry Road, Stanford, CA 94305, USA.

出版信息

J Psychiatr Res. 2011 Jan;45(1):64-75. doi: 10.1016/j.jpsychires.2010.05.009. Epub 2010 Jul 3.

Abstract

OBJECTIVE

To evaluate the efficacy of rEEG(®)-guided pharmacotherapy for the treatment of depression in those circumstances where rEEG and STAR*D provided different recommendations.

MATERIALS AND METHODS

This was a randomized, single-blind, parallel group, 12 center, US study of rEEG-guided pharmacotherapy vs. the most effective treatment regimens reported in the NIH sponsored STARD study. Relatively treatment-resistant subjects ≥18 years who failed one or more antidepressants were required to have a QIDS-16-SR score ≥13 and a MADRS score ≥26 at baseline. All subjects underwent a washout of all current medications (with some protocol-specified exceptions) for at least five half-lives before receiving a QEEG and rEEG report. Subjects randomized to rEEG were assigned a regimen based on the rEEG report. Control subjects who had failed only SSRI's in their current episode were randomized to receive venlafaxine XR. Control subjects who had failed antidepressants from ≥2 classes of antidepressants were randomized to receive a regimen from Steps 2-4 of the STARD study. Treatment lasted 12 weeks. The primary outcome measures were change from baseline for self-rated QIDS-SR16 and Q-LES-Q-SF.

RESULTS

A total of 114 subjects were randomized and 89 subjects were evaluable. rEEG-guided pharmacotherapy exhibited significantly greater improvement for both primary endpoints, QIDS-SR16 (-6.8 vs. -4.5, p<0.0002) and Q-LES-Q-SF (18.0 vs. 8.9, p<0.0002) compared to control, respectively, as well as statistical superiority in 9 out of 12 secondary endpoints.

CONCLUSIONS

These results warrant additional studies to determine the role of rEEG-guided psychopharmacology in the treatment of depression. If these results were confirmed, rEEG-guided pharmacotherapy would represent an easy, relatively inexpensive, predictive, objective office procedure that builds upon clinical judgment to guide antidepressant medication choice.

摘要

目的

评估 rEEG(®)指导下的药物治疗在 rEEG 和 STAR*D 提供不同建议的情况下治疗抑郁症的疗效。

材料和方法

这是一项在美国进行的随机、单盲、平行组、12 中心研究,比较了 rEEG 指导下的药物治疗与 NIH 赞助的 STARD 研究中报告的最有效治疗方案。研究对象为年龄≥18 岁、至少对一种抗抑郁药反应不佳且既往至少接受过一种抗抑郁药治疗但失败的患者,要求他们在基线时 QIDS-16-SR 评分≥13 分且 MADRS 评分≥26 分。所有患者在接受 QEEG 和 rEEG 报告前均需停用所有当前药物(根据方案有一些例外)至少 5 个半衰期。随机分配至 rEEG 组的患者根据 rEEG 报告制定治疗方案。当前发作中仅 SSRIs 治疗失败的对照组患者随机接受文拉法辛 XR;抗抑郁药治疗失败≥2 种药物类别的对照组患者随机接受 STARD 研究的第 2-4 步治疗方案。治疗持续 12 周。主要结局指标为自我报告的 QIDS-SR16 和 Q-LES-Q-SF 从基线的变化。

结果

共有 114 例患者被随机分配,89 例患者可评估。rEEG 指导下的药物治疗在两个主要结局指标上均显示出显著更大的改善,QIDS-SR16(-6.8 对-4.5,p<0.0002)和 Q-LES-Q-SF(18.0 对 8.9,p<0.0002),与对照组相比,rEEG 指导下的药物治疗在 12 个次要结局指标中的 9 个方面也具有统计学优势。

结论

这些结果值得进一步研究以确定 rEEG 指导下的精神药理学在抑郁症治疗中的作用。如果这些结果得到证实,rEEG 指导下的药物治疗将代表一种简单、相对廉价、预测性强、客观的门诊程序,该程序基于临床判断来指导抗抑郁药的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验