Suppr超能文献

质子治疗中输出因子、射程和扩展布拉格峰的预测。

Prediction of output factor, range, and spread-out bragg peak for proton therapy.

作者信息

Kim Dong Wook, Lim Young Kyung, Ahn Sung Hwan, Shin Jungwook, Shin Dongho, Yoon Myongguen, Lee Se Byeong, Kim Dae Yong, Park Sung Yong

机构信息

Proton Therapy Center, National Cancer Center, Gyeonggi-do, Republic of Korea.

出版信息

Med Dosim. 2011 Summer;36(2):145-52. doi: 10.1016/j.meddos.2010.02.006. Epub 2010 Jul 5.

Abstract

In proton therapy, patient quality assurance (QA) requires measuring the beam range, spread-out Bragg peak (SOBP), and output factor. If these values can be predicted by using sampling measurements or previous QA data to find the correlation between beam setup parameters and measured data, efforts expended on patient QA can be reduced. Using sampling data, we predicted the range, SOBP, and output factor of the proton beam. To obtain sampling data, we measured the range, SOBP, and output factor for 14 data points at each of 24-beam range options, from 4-28 cm. Prediction conformity was evaluated by the difference between predicted and measured patient QA data. Results indicated that for 60% of patients, the values could be predicted within 3% of dose uncertainty.

摘要

在质子治疗中,患者质量保证(QA)需要测量射束射程、扩展布拉格峰(SOBP)和输出因子。如果可以通过采样测量或先前的QA数据来预测这些值,以找到射束设置参数与测量数据之间的相关性,那么在患者QA上花费的精力就可以减少。我们使用采样数据预测了质子束的射程、SOBP和输出因子。为了获得采样数据,我们在24个射束射程选项(4至28厘米)中的每一个选项下,对14个数据点的射程、SOBP和输出因子进行了测量。通过预测的患者QA数据与测量数据之间的差异来评估预测的一致性。结果表明,对于60%的患者,这些值可以在剂量不确定性的3%范围内进行预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验