Berlin Institute of Technology, Machine Learning Laboratory, Berlin, Germany.
Neuroimage. 2011 May 15;56(2):814-25. doi: 10.1016/j.neuroimage.2010.06.048. Epub 2010 Jun 28.
Analyzing brain states that correspond to event related potentials (ERPs) on a single trial basis is a hard problem due to the high trial-to-trial variability and the unfavorable ratio between signal (ERP) and noise (artifacts and neural background activity). In this tutorial, we provide a comprehensive framework for decoding ERPs, elaborating on linear concepts, namely spatio-temporal patterns and filters as well as linear ERP classification. However, the bottleneck of these techniques is that they require an accurate covariance matrix estimation in high dimensional sensor spaces which is a highly intricate problem. As a remedy, we propose to use shrinkage estimators and show that appropriate regularization of linear discriminant analysis (LDA) by shrinkage yields excellent results for single-trial ERP classification that are far superior to classical LDA classification. Furthermore, we give practical hints on the interpretation of what classifiers learned from the data and demonstrate in particular that the trade-off between goodness-of-fit and model complexity in regularized LDA relates to a morphing between a difference pattern of ERPs and a spatial filter which cancels non task-related brain activity.
由于单次试验中存在较高的试验间变异性和信号(事件相关电位 (ERP))与噪声(伪迹和神经背景活动)之间的不利比例,因此对与事件相关电位 (ERP) 相对应的大脑状态进行单次试验基础上的分析是一个难题。在本教程中,我们提供了一种用于解码 ERP 的综合框架,详细介绍了线性概念,即时空模式和滤波器以及线性 ERP 分类。然而,这些技术的瓶颈在于它们需要在高维传感器空间中进行精确的协方差矩阵估计,这是一个非常复杂的问题。作为一种补救措施,我们提出使用收缩估计量,并表明通过收缩对线性判别分析 (LDA) 进行适当的正则化可以产生出色的单次 ERP 分类结果,远远优于经典的 LDA 分类。此外,我们还对分类器从数据中学习到的内容进行了解释,并特别证明了正则化 LDA 中的拟合优度和模型复杂度之间的权衡关系与 ERP 差异模式和空间滤波器之间的渐变有关,该滤波器可以消除与任务无关的大脑活动。