Suppr超能文献

基于小波分解的事件相关电位多分辨率分析

Multiresolution analysis of event-related potentials by wavelet decomposition.

作者信息

Samar V J, Swartz K P, Raghuveer M R

机构信息

Communication Research Department, National Technical Institute for the Deaf at Rochester Institute of Technology, NY 14623-0887, USA.

出版信息

Brain Cogn. 1995 Apr;27(3):398-438. doi: 10.1006/brcg.1995.1028.

Abstract

Wavelet analysis is presented as a new tool for analyzing event-related potentials (ERPs). The wavelet transform expands ERPs into a time-scale representation, which allows the analyst to zoom in on the small scale, fine structure details of an ERP or zoom out to examine the large scale, global waveshape. The time-scale representation is closely related to the more familiar time-frequency representation used in spectrograms of time-varying signals. However, time-scale representations have special properties that make them attractive for many ERP applications. In particular, time-scale representations permit theoretically unlimited time resolution for the detection of short-lived peaks and permit a flexible choice of wavelet basis functions for analyzing different types of ERPs. Generally, time-scale representations offer a formal basis for designing new, specialized filters for various ERP applications. Among recently explored applications of wavelet analysis to ERPs are (a) the precise identification of the time of occurrence of overlapping peaks in the auditory brainstem evoked response; (b) the extraction of single-trial ERPs from background EEG noise; (c) the decomposition of averaged ERP waveforms into orthogonal detail functions that isolate the waveform's experimental behavior in distinct, orthogonal frequency bands; and (d) the use of wavelet transform coefficients to concisely extract important information from ERPs that predicts human signal detection performance. In this tutorial we present an intuitive introduction to wavelets and the wavelet transform, concentrating on the multiresolution approach to wavelet analysis of ERP data. We then illustrate this approach with real data. Finally, we offer some speculations on future applications of wavelet analysis to ERP data.

摘要

小波分析作为一种分析事件相关电位(ERP)的新工具被提出。小波变换将ERP扩展为一种时间尺度表示形式,这使得分析人员能够放大观察ERP的小尺度精细结构细节,或者缩小以检查大尺度的整体波形。这种时间尺度表示与在时变信号频谱图中使用的更为常见的时间频率表示密切相关。然而,时间尺度表示具有一些特殊性质,使其在许多ERP应用中具有吸引力。特别是,时间尺度表示在理论上允许对短暂峰值的检测具有无限的时间分辨率,并且允许灵活选择小波基函数来分析不同类型的ERP。一般来说,时间尺度表示为设计用于各种ERP应用的新型专用滤波器提供了形式基础。在最近探索的小波分析在ERP中的应用包括:(a)精确识别听觉脑干诱发电位中重叠峰值的出现时间;(b)从背景脑电图噪声中提取单次试验ERP;(c)将平均ERP波形分解为正交细节函数,以在不同的正交频带中分离波形的实验行为;以及(d)使用小波变换系数从ERP中简洁地提取预测人类信号检测性能的重要信息。在本教程中,我们对小波和小波变换进行直观介绍,重点关注对ERP数据进行小波分析的多分辨率方法。然后我们用实际数据说明这种方法。最后,我们对小波分析在ERP数据未来应用方面进行一些推测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验