Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48104, USA.
Heart Rhythm. 2010 Oct;7(10):1491-8. doi: 10.1016/j.hrthm.2010.06.028. Epub 2010 Jun 26.
Gap junctions are potential targets for pharmacologic intervention. We previously developed a series of peptide sequences that prevent closure of connexin43 (Cx43) channels, bind to cardiac Cx43, and prevent acidification-induced uncoupling of cardiac gap junctions.
The purpose of this study was to identify and validate the minimum core active structure in peptides containing an RR-N/Q-Y motif. Based on that information, we sought to generate a peptidomimetic molecule that acts on the chemical regulation of Cx43 channels.
Experiments were based on a combination of biochemical, spectroscopic, and electrophysiologic techniques as well as molecular modeling of active pharmacophores with Cx43 activity.
Molecular modeling analysis indicated that the functional elements of the side chains in the motif RRXY form a triangular structure. Experimental data revealed that compounds containing such a structure bind to Cx43 and prevent Cx43 chemical gating. These results provided us with the first platform for drug design targeted to the carboxyl terminal of Cx43. Using that platform, we designed and validated a peptidomimetic compound (ZP2519; molecular weight 619 Da) that prevented octanol-induced uncoupling of Cx43 channels and pH gating of cardiac gap junctions.
Structure-based drug design can be applied to the development of pharmacophores that act directly on Cx43. Small molecules containing these pharmacophores can serve as tools to determine the role of gap junction regulation in the control of cardiac rhythm. Future studies will determine whether these compounds can function as pharmacologic agents for the treatment of a selected subset of cardiac arrhythmias.
缝隙连接是药物干预的潜在靶点。我们之前开发了一系列肽序列,可防止连接蛋白 43(Cx43)通道关闭,与心脏 Cx43 结合,并防止酸化诱导的心脏缝隙连接解偶联。
本研究的目的是鉴定和验证含有 RR-N/Q-Y 基序的肽中的最小核心活性结构。基于该信息,我们试图生成一种肽模拟分子,作用于 Cx43 通道的化学调节。
实验基于生化、光谱和电生理技术的结合,以及与 Cx43 活性的药效团的分子建模。
分子建模分析表明,基序 RRXY 中侧链的功能元素形成一个三角形结构。实验数据表明,含有这种结构的化合物与 Cx43 结合并防止 Cx43 化学门控。这些结果为我们提供了第一个针对 Cx43 羧基末端的药物设计平台。使用该平台,我们设计并验证了一种肽模拟化合物(ZP2519;分子量 619 Da),可防止辛醇诱导的 Cx43 通道解偶联和心脏缝隙连接的 pH 门控。
基于结构的药物设计可应用于直接作用于 Cx43 的药效团的开发。含有这些药效团的小分子可以作为工具,用于确定缝隙连接调节在控制心脏节律中的作用。未来的研究将确定这些化合物是否可以作为治疗选定的心律失常亚群的药物。