Suppr超能文献

真核微生物的新一代测序技术:基于测序解决生物学问题的方法

Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems.

作者信息

Nowrousian Minou

机构信息

Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum ND 6/165, Universitätsstr. 150, 44780 Bochum, Germany.

出版信息

Eukaryot Cell. 2010 Sep;9(9):1300-10. doi: 10.1128/EC.00123-10. Epub 2010 Jul 2.

Abstract

Over the past 5 years, large-scale sequencing has been revolutionized by the development of several so-called next-generation sequencing (NGS) technologies. These have drastically increased the number of bases obtained per sequencing run while at the same time decreasing the costs per base. Compared to Sanger sequencing, NGS technologies yield shorter read lengths; however, despite this drawback, they have greatly facilitated genome sequencing, first for prokaryotic genomes and within the last year also for eukaryotic ones. This advance was possible due to a concomitant development of software that allows the de novo assembly of draft genomes from large numbers of short reads. In addition, NGS can be used for metagenomics studies as well as for the detection of sequence variations within individual genomes, e.g., single-nucleotide polymorphisms (SNPs), insertions/deletions (indels), or structural variants. Furthermore, NGS technologies have quickly been adopted for other high-throughput studies that were previously performed mostly by hybridization-based methods like microarrays. This includes the use of NGS for transcriptomics (RNA-seq) or the genome-wide analysis of DNA/protein interactions (ChIP-seq). This review provides an overview of NGS technologies that are currently available and the bioinformatics analyses that are necessary to obtain information from the flood of sequencing data as well as applications of NGS to address biological questions in eukaryotic microorganisms.

摘要

在过去5年里,几种所谓的下一代测序(NGS)技术的发展给大规模测序带来了变革。这些技术极大地增加了每次测序运行所获得的碱基数量,同时降低了每个碱基的成本。与桑格测序相比,NGS技术产生的读长较短;然而,尽管有这个缺点,它们极大地促进了基因组测序,首先是原核生物基因组测序,在过去一年里也实现了真核生物基因组测序。这一进展得益于软件的同步发展,该软件能够从大量短读段中进行基因组草图的从头组装。此外,NGS可用于宏基因组学研究以及检测个体基因组内的序列变异,例如单核苷酸多态性(SNP)、插入/缺失(indel)或结构变异。此外,NGS技术已迅速应用于其他高通量研究,这些研究以前大多通过基于杂交的方法如微阵列进行。这包括将NGS用于转录组学(RNA测序)或DNA/蛋白质相互作用的全基因组分析(ChIP测序)。本综述概述了目前可用的NGS技术以及从海量测序数据中获取信息所需的生物信息学分析,以及NGS在解决真核微生物生物学问题方面的应用。

相似文献

2
LOCAS--a low coverage assembly tool for resequencing projects.LOCAS--用于重测序项目的低覆盖度组装工具。
PLoS One. 2011;6(8):e23455. doi: 10.1371/journal.pone.0023455. Epub 2011 Aug 15.
6
Sequencing technologies and genome sequencing.测序技术和基因组测序。
J Appl Genet. 2011 Nov;52(4):413-35. doi: 10.1007/s13353-011-0057-x. Epub 2011 Jun 23.

引用本文的文献

1
Application of next-generation sequencing to identify different pathogens.应用新一代测序技术鉴定不同病原体。
Front Microbiol. 2024 Jan 29;14:1329330. doi: 10.3389/fmicb.2023.1329330. eCollection 2023.
5
Investigating the Ocular Surface Microbiome: What Can It Tell Us?探究眼表微生物组:它能告诉我们什么?
Clin Ophthalmol. 2023 Jan 19;17:259-271. doi: 10.2147/OPTH.S359304. eCollection 2023.
6
Unveiling Mycoviromes Using Fungal Transcriptomes.利用真菌转录组揭示真菌病毒组。
Int J Mol Sci. 2022 Sep 18;23(18):10926. doi: 10.3390/ijms231810926.
8
Nanopore sequencing of RNA and cDNA molecules in .在. 中对 RNA 和 cDNA 分子进行纳米孔测序。
RNA. 2022 Mar;28(3):400-417. doi: 10.1261/rna.078937.121. Epub 2021 Dec 14.
9
Advances in Understanding Pathobiology: What Does RNA-Seq Tell Us?病理生物学理解的进展:RNA测序告诉了我们什么?
Front Cell Dev Biol. 2021 Sep 1;9:702240. doi: 10.3389/fcell.2021.702240. eCollection 2021.

本文引用的文献

3
A three-dimensional model of the yeast genome.酵母基因组的三维模型。
Nature. 2010 May 20;465(7296):363-7. doi: 10.1038/nature08973. Epub 2010 May 2.
5
The next generation becomes the now generation.下一代成为了当代。
PLoS Genet. 2010 Apr 8;6(4):e1000906. doi: 10.1371/journal.pgen.1000906.
10
Assembly algorithms for next-generation sequencing data.下一代测序数据的组装算法。
Genomics. 2010 Jun;95(6):315-27. doi: 10.1016/j.ygeno.2010.03.001. Epub 2010 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验