Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beersheva 84105, Israel.
Appl Environ Microbiol. 2010 Sep;76(17):5684-92. doi: 10.1128/AEM.00681-10. Epub 2010 Jul 2.
Like eukarya and bacteria, archaea also perform N-glycosylation. However, the N-linked glycans of archaeal glycoproteins present a variety not seen elsewhere. Archaea accordingly rely on N-glycosylation pathways likely involving a broad range of species-specific enzymes. To harness the enormous applied potential of such diversity for the generation of glycoproteins bearing tailored N-linked glycans, the development of an appropriate archaeal glycoengineering platform is required. With a sequenced genome, a relatively well-defined N-glycosylation pathway, and molecular tools for gene manipulation, the haloarchaeon Haloferax volcanii (Hfx. volcanii) represents a promising candidate. Accordingly, cells lacking AglD, a glycosyltransferase involved in adding the final hexose of a pentasaccharide N-linked to the surface (S)-layer glycoprotein, were transformed to express AglD homologues from other haloarchaea. The introduction of nonnative versions of AglD led to the appearance of an S-layer glycoprotein similar to the protein from the native strain. Indeed, mass spectrometry confirmed that AglD and its homologues introduce the final hexose to the N-linked S-layer glycoprotein pentasaccharide. Heterologously expressed haloarchaeal AglD homologues contributed to N-glycosylation in Hfx. volcanii despite an apparent lack of AglD function in those haloarchaea from where the introduced homologues came. For example, although functional in Hfx. volcanii, no transcription of the Halobacterium salinarum aglD homologue, OE1482, was detected in cells of the native host grown under various conditions. Thus, at least one AglD homologue works more readily in Hfx. volcanii than in the native host. These results warrant the continued assessment of Hfx. volcanii as a glycosylation "workshop."
与真核生物和细菌一样,古菌也进行 N-糖基化。然而,古菌糖蛋白的 N-连接聚糖呈现出其他地方未见的多样性。因此,古菌依赖于可能涉及广泛物种特异性酶的 N-糖基化途径。为了利用这种多样性产生具有定制 N-连接聚糖的糖蛋白的巨大应用潜力,需要开发适当的古菌糖工程平台。具有测序基因组、相对明确的 N-糖基化途径以及用于基因操作的分子工具,产甲烷盐菌(Haloferax volcanii,Hfx. volcanii)是一个很有前途的候选者。因此,缺乏参与将表面(S)-层糖蛋白上的五糖 N-连接的最后一个己糖添加的糖基转移酶 AglD 的细胞被转化为表达来自其他产甲烷盐菌的 AglD 同源物。引入非天然版本的 AglD 导致出现类似于天然菌株蛋白的 S-层糖蛋白。事实上,质谱分析证实 AglD 及其同源物将最后一个己糖引入 N-连接的 S-层糖蛋白五糖中。尽管引入的同源物在其来源的产甲烷盐菌中似乎缺乏 AglD 功能,但异源表达的产甲烷盐菌 AglD 同源物有助于 Hfx. volcanii 的 N-糖基化。例如,尽管在 Hfx. volcanii 中具有功能,但在天然宿主细胞中,在各种条件下生长时,未检测到盐杆菌(Halobacterium salinarum) aglD 同源物 OE1482 的转录。因此,至少有一种 AglD 同源物在 Hfx. volcanii 中比在天然宿主中更容易发挥作用。这些结果证明了继续将 Hfx. volcanii 评估为糖基化“车间”是合理的。