University of California Irvine, 3019 Donald Bren Hall, Irvine, CA 92697-3435, USA.
IEEE Trans Pattern Anal Mach Intell. 2011 Apr;33(4):794-806. doi: 10.1109/TPAMI.2010.127.
We present a taxonomy for local distance functions where most existing algorithms can be regarded as approximations of the geodesic distance defined by a metric tensor. We categorize existing algorithms by how, where, and when they estimate the metric tensor. We also extend the taxonomy along each axis. How: We introduce hybrid algorithms that use a combination of techniques to ameliorate overfitting. Where: We present an exact polynomial-time algorithm to integrate the metric tensor along the lines between the test and training points under the assumption that the metric tensor is piecewise constant. When: We propose an interpolation algorithm where the metric tensor is sampled at a number of references points during the offline phase. The reference points are then interpolated during the online classification phase. We also present a comprehensive evaluation on tasks in face recognition, object recognition, and digit recognition.
我们提出了一种局部距离函数分类法,其中大多数现有算法都可以被视为由度量张量定义的测地线距离的近似。我们根据算法如何、何处以及何时估计度量张量对其进行分类。我们还沿着每个轴扩展了分类法。如何:我们引入了混合算法,该算法使用了多种技术的组合来改善过拟合。何处:我们提出了一种精确的多项式时间算法,在假设度量张量是分段常数的情况下,沿着测试点和训练点之间的线积分度量张量。何时:我们提出了一种插值算法,其中在离线阶段在一些参考点处对度量张量进行采样,然后在在线分类阶段对参考点进行插值。我们还在人脸识别、物体识别和数字识别任务上进行了全面的评估。