Wang Hanzi, Mirota Daniel, Ishii Masaru, Hager Gregory D
Computer Science Department, Johns Hopkins University, Baltimore, MD, 21218.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008 Jun 23;2008:1-7. doi: 10.1109/CVPR.2008.4587687.
To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct matches) from outliers. In this paper, we propose a new robust estimator, Adaptive Scale Kernel Consensus (ASKC), which can tolerate more than 50 percent outliers while automatically estimating the scale of inliers. With ASKC, we develop a reliable feature tracking algorithm. This, in turn, allows us to develop a complete system for estimating endoscopic camera motion and reconstructing anatomical structures from endoscopic image sequences. Preliminary experiments on endoscopic sinus imagery have achieved promising results.
为了从内窥镜图像序列中正确估计相机运动参数并重建周围组织的结构,我们不仅需要处理可能涉及超过50%数据的异常值(例如,不匹配),还需要准确地将内点(正确匹配)与异常值区分开来。在本文中,我们提出了一种新的鲁棒估计器,自适应尺度核一致性(ASKC),它可以容忍超过50%的异常值,同时自动估计内点的尺度。利用ASKC,我们开发了一种可靠的特征跟踪算法。这反过来又使我们能够开发一个完整的系统,用于从内窥镜图像序列中估计内窥镜相机运动并重建解剖结构。在内窥镜鼻窦图像上的初步实验取得了有希望的结果。