Suppr超能文献

一种用于多层运动下鲁棒点匹配的混合模型。

A mixture model for robust point matching under multi-layer motion.

作者信息

Ma Jiayi, Chen Jun, Ming Delie, Tian Jinwen

机构信息

National Key Laboratory of Science & Technology on Multi-Spectral Information Processing, School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.

出版信息

PLoS One. 2014 Mar 21;9(3):e92282. doi: 10.1371/journal.pone.0092282. eCollection 2014.

Abstract

This paper proposes an efficient mixture model for establishing robust point correspondences between two sets of points under multi-layer motion. Our algorithm starts by creating a set of putative correspondences which can contain a number of false correspondences, or outliers, in addition to the true correspondences (inliers). Next we solve for correspondence by interpolating a set of spatial transformations on the putative correspondence set based on a mixture model, which involves estimating a consensus of inlier points whose matching follows a non-parametric geometrical constraint. We formulate this as a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS). MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation). We further provide a fast implementation based on sparse approximation which can achieve a significant speed-up without much performance degradation. We illustrate the proposed method on 2D and 3D real images for sparse feature correspondence, as well as a public available dataset for shape matching. The quantitative results demonstrate that our method is robust to non-rigid deformation and multi-layer/large discontinuous motion.

摘要

本文提出了一种高效的混合模型,用于在多层运动下在两组点之间建立鲁棒的点对应关系。我们的算法首先创建一组假定对应关系,除了真实对应关系(内点)之外,该组对应关系可能包含一些错误对应关系,即异常值。接下来,我们基于混合模型在假定对应关系集上对一组空间变换进行插值来求解对应关系,这涉及估计内点的一致性,其匹配遵循非参数几何约束。我们将此表述为一个贝叶斯模型的最大后验(MAP)估计,其中隐藏/潜在变量指示假定集中的匹配是异常值还是内点。我们在再生核希尔伯特空间(RKHS)中对对应关系施加非参数几何约束作为先验分布。通过期望最大化(EM)算法进行MAP估计,该算法通过估计先验模型的方差(初始化为一个较大值)能够非常快速地获得良好估计(例如,避免此公式中固有的许多局部最小值)。我们还基于稀疏近似提供了一种快速实现方法,该方法可以在不显著降低性能的情况下实现大幅加速。我们在二维和三维真实图像上展示了所提出的方法用于稀疏特征对应,以及在一个用于形状匹配的公开可用数据集上进行了展示。定量结果表明,我们的方法对非刚性变形和多层/大的不连续运动具有鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7169/3962380/0e6d2ddbe5dd/pone.0092282.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验