Ci Wenyan, Huang Yingping
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.
School of Electric Power Engineering, Nanjing Normal University Taizhou Colledge, Taizhou 225300, China.
Sensors (Basel). 2016 Oct 17;16(10):1704. doi: 10.3390/s16101704.
Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera's 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg-Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade-Lucas-Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.
视觉里程计利用图像信息估计智能体(如车辆和机器人)的自身运动,是自动驾驶车辆和机器人技术的关键组成部分。本文提出了一种稳健且精确的方法,用于使用带有光流分析的立体视觉装置估计六自由度自身运动。通过相机的三维运动和平板成像模型,建立光流、深度和相机自身运动参数之间的数学关系,从而创建一个拟合一组特征点的目标函数。相应地,使用迭代Levenberg-Marquard方法通过最小化目标函数来计算六个运动参数。视觉里程计的关键点之一是为计算选择的特征点应尽可能包含内点。在这项工作中,最初使用Kanade-Lucas-Tomasi(KLT)算法检测特征点及其光流。随后进行圆匹配以去除由KLT算法不匹配引起的异常值。施加空间位置约束以从KLT算法检测到的点集中滤除移动点。采用随机抽样一致性(RANSAC)算法进一步优化特征点集,即消除异常值的影响。跟踪剩余的点以估计后续帧中的自身运动参数。本文提出的方法在真实交通视频上进行了测试,结果证明了该方法的稳健性和精确性。