Bacaër Nicolas, Ait Dads El Hadi
Research group UMMISCO, IRD (Institut de Recherche pour le Développement), 32 avenue Henri Varagnat, 93143 Bondy, France.
J Math Biol. 2011 May;62(5):741-62. doi: 10.1007/s00285-010-0354-8. Epub 2010 Jul 6.
The basic reproduction number R (0) has been used in population biology, especially in epidemiology, for several decades. But a suitable definition in the case of models with periodic coefficients was given only in recent years. The definition involves the spectral radius of an integral operator. As in the study of structured epidemic models in a constant environment, there is a need to emphasize the biological meaning of this spectral radius. In this paper we show that R (0) for periodic models is still an asymptotic per generation growth rate. We also emphasize the difference between this theoretical R (0) for periodic models and the "reproduction number" obtained by fitting an exponential to the beginning of an epidemic curve. This difference has been overlooked in recent studies of the H1N1 influenza pandemic.
基本再生数(R(0))已在种群生物学中使用了数十年,尤其是在流行病学领域。但直到最近几年,才给出了具有周期系数模型情况下的合适定义。该定义涉及一个积分算子的谱半径。如同在恒定环境下对结构化流行病模型的研究一样,有必要强调这个谱半径的生物学意义。在本文中,我们表明周期模型的(R(0))仍然是每代的渐近增长率。我们还强调了周期模型的这个理论(R(0))与通过对疫情曲线起始段拟合指数函数得到的“再生数”之间的差异。这种差异在最近对甲型H1N1流感大流行的研究中被忽视了。