Bacaër Nicolas, Ait Dads El Hadi
UMI209-UMMISCO, IRD and University Paris 6, Bondy, France,
J Math Biol. 2014 Feb;68(3):533-48. doi: 10.1007/s00285-012-0623-9. Epub 2012 Nov 10.
For a certain class of multi-type branching processes in a continuous-time periodic environment, we show that the extinction probability is equal to (resp. less than) 1 if the basic reproduction number R(0) is less than (resp. bigger than) 1. The proof uses results concerning the asymptotic behavior of cooperative systems of differential equations. In epidemiology the extinction probability may be used as a time-periodic measure of the epidemic risk. As an example we consider a linearized SEIR epidemic model and data from the recent measles epidemic in France. Discrete-time models with potential applications in conservation biology are also discussed.
对于一类在连续时间周期环境中的多类型分支过程,我们证明,如果基本再生数(R(0))小于(分别地,大于)(1),则灭绝概率等于(分别地,小于)(1)。证明使用了关于微分方程合作系统渐近行为的结果。在流行病学中,灭绝概率可用作流行病风险的时间周期度量。作为一个例子,我们考虑一个线性化的SEIR流行病模型以及来自法国近期麻疹疫情的数据。还讨论了在保护生物学中有潜在应用的离散时间模型。